Begoña Martin-Castillo, Sara Verdura, Àngela Llop-Hernández, Ruth Lupu, Elisabet Cuyàs, Javier A Menendez
{"title":"Metabolic hallmarks of trastuzumab resistance.","authors":"Begoña Martin-Castillo, Sara Verdura, Àngela Llop-Hernández, Ruth Lupu, Elisabet Cuyàs, Javier A Menendez","doi":"10.1080/14728222.2025.2532394","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The HER2-targeted monoclonal antibody trastuzumab has significantly improved the survival of patients with HER2-positive breast cancer (HER2+ BC) in both early and metastatic disease. Therapeutic resistance remains an inevitable challenge in the advanced setting, ultimately limiting the long-term efficacy of trastuzumab. Numerous mechanisms of trastuzumab resistance and response heterogeneity have been described, most involving alterations in HER2 receptor levels and reactivation of HER2 downstream signaling. However, the growing number of metabolic escape routes that allow HER2+ BC cells to evade HER2 inhibition have received little attention.</p><p><strong>Areas covered: </strong>We comprehensively review the metabolic strategies that HER2+ BC cells adopt to enable trastuzumab resistance, grouping them into a structured classification that takes into account their functional nature, namely: (1) metabolic reprogramming - how cells maintain an adequate supply of energy and biosynthetic precursors to survive, grow and proliferate despite HER2 inhibition; (2) adaptive stress response - how cells increase their resilience to survive trastuzumab-induced stress and damage; and (3) metabolic-signaling crosstalk - how key survival pathways redirect metabolism to reinforce trastuzumab resistance feedback loops.</p><p><strong>Expert opinion: </strong>The metabolic hallmarks of trastuzumab resistance may help to identify high-quality predictive biomarkers and to rationally develop optimized therapeutic strategies to counteract trastuzumab resistance metabolically.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":"1-23"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2025.2532394","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The HER2-targeted monoclonal antibody trastuzumab has significantly improved the survival of patients with HER2-positive breast cancer (HER2+ BC) in both early and metastatic disease. Therapeutic resistance remains an inevitable challenge in the advanced setting, ultimately limiting the long-term efficacy of trastuzumab. Numerous mechanisms of trastuzumab resistance and response heterogeneity have been described, most involving alterations in HER2 receptor levels and reactivation of HER2 downstream signaling. However, the growing number of metabolic escape routes that allow HER2+ BC cells to evade HER2 inhibition have received little attention.
Areas covered: We comprehensively review the metabolic strategies that HER2+ BC cells adopt to enable trastuzumab resistance, grouping them into a structured classification that takes into account their functional nature, namely: (1) metabolic reprogramming - how cells maintain an adequate supply of energy and biosynthetic precursors to survive, grow and proliferate despite HER2 inhibition; (2) adaptive stress response - how cells increase their resilience to survive trastuzumab-induced stress and damage; and (3) metabolic-signaling crosstalk - how key survival pathways redirect metabolism to reinforce trastuzumab resistance feedback loops.
Expert opinion: The metabolic hallmarks of trastuzumab resistance may help to identify high-quality predictive biomarkers and to rationally develop optimized therapeutic strategies to counteract trastuzumab resistance metabolically.
期刊介绍:
The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials.
The Editors welcome:
Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development.
Articles should not include clinical information including specific drugs and clinical trials.
Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs.
The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.