Manoj Kumar Sahoo, Nidhi Agrawal, S K Lanjhiyana, Sanjay Kumar Bharti, Meenakshi Jaiswal
{"title":"Therapeutic Perspective of Prodrugs of Non-Steroidal Anti-Inflammatory Drugs and Antioxidants: An Approach to Reduce Toxicity and Enhance Efficacy.","authors":"Manoj Kumar Sahoo, Nidhi Agrawal, S K Lanjhiyana, Sanjay Kumar Bharti, Meenakshi Jaiswal","doi":"10.2174/0115680266360021250625073338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most widely prescribed medications in the world, yet their applications as anti-inflammatory, analgesic, and anti-pyretic drugs remain principally restricted by their detrimental effects on the gastrointestinal tract (GIT) systems. The prodrug approaches have substantially combated the drawbacks of currently available marketed NSAIDs and also showed increased activity.</p><p><strong>Objective: </strong>In the present study, an extensive literature review on mutual prodrugs of NSAIDs with natural antioxidants has been presented.</p><p><strong>Methods: </strong>Different databases like ScienceDirect, Elsevier, PubMed, Google Scholar, etc. were used for an extensive search of articles related to NSAIDs, prodrug concepts, as well as research based on all of the NSAIDs-prodrug molecules prepared to date.</p><p><strong>Results: </strong>Recent developments in prodrug design have been explored that utilize naturally occurring antioxidants, including Thymol, Guaiacol, Menthol, Eugenol, Sesamol, Vanillin, and Umbelliferon, for the synthesis of mutual prodrugs by esterification methods. Many studies have shown that these prodrugs have significant stability in acidic pH while hydrolyzing in neutral and alkaline pH environments. This indicates their potential as advantageous therapeutic agents with enhanced safety profiles.</p><p><strong>Conclusion: </strong>The mutual prodrug strategy offers a chance in medicinal chemistry to enhance the therapeutic and clinical efficiency of a drug that has certain unfavorable qualities that limit its clinical utility. This review enlightens mutual prodrugs of NSAIDs and antioxidants that are less harmful and beneficial to mankind, respectively.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266360021250625073338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most widely prescribed medications in the world, yet their applications as anti-inflammatory, analgesic, and anti-pyretic drugs remain principally restricted by their detrimental effects on the gastrointestinal tract (GIT) systems. The prodrug approaches have substantially combated the drawbacks of currently available marketed NSAIDs and also showed increased activity.
Objective: In the present study, an extensive literature review on mutual prodrugs of NSAIDs with natural antioxidants has been presented.
Methods: Different databases like ScienceDirect, Elsevier, PubMed, Google Scholar, etc. were used for an extensive search of articles related to NSAIDs, prodrug concepts, as well as research based on all of the NSAIDs-prodrug molecules prepared to date.
Results: Recent developments in prodrug design have been explored that utilize naturally occurring antioxidants, including Thymol, Guaiacol, Menthol, Eugenol, Sesamol, Vanillin, and Umbelliferon, for the synthesis of mutual prodrugs by esterification methods. Many studies have shown that these prodrugs have significant stability in acidic pH while hydrolyzing in neutral and alkaline pH environments. This indicates their potential as advantageous therapeutic agents with enhanced safety profiles.
Conclusion: The mutual prodrug strategy offers a chance in medicinal chemistry to enhance the therapeutic and clinical efficiency of a drug that has certain unfavorable qualities that limit its clinical utility. This review enlightens mutual prodrugs of NSAIDs and antioxidants that are less harmful and beneficial to mankind, respectively.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.