Zahra Heydari, Alexander Malogolovkin, Olga Smirnova, Damir Lyukmanov, Alina Filimonova, Anastasia Shpichka, Massoud Vosough, Peter Timashev
{"title":"3D models to study therapy-induced senescence: where do we stand now?","authors":"Zahra Heydari, Alexander Malogolovkin, Olga Smirnova, Damir Lyukmanov, Alina Filimonova, Anastasia Shpichka, Massoud Vosough, Peter Timashev","doi":"10.1007/s10616-025-00774-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence (CS) is a crucial tumor-suppressive phenomenon, inhibiting proliferation of cancerous cells. However, cancer therapies can also induce tumor cell senescence, generating senescent cells in tumoral and normal tissues. While initially beneficial, these senescent cells can paradoxically contribute to tumor recurrence, metastasis, and therapy resistance via the senescence-associated secretory phenotype (SASP). Due to the diverse and critical roles, cellular senescence could be a potential target in cancer biomedicine. To extend our understanding of therapy-induced senescence (TIS), developing experimental models is necessary. Currently TIS established models can be categorized into animal-based and laboratory models. These models are essential for advancing our knowledge of aging mechanisms and developing new treatment modalities. In vivo models of TIS have faced limitations, including poor immune system representation, oversimplified stromal complexity, and an inability to model functional vascular networks. Incorporating cutting-edge technologies such as 3D cultures, co-culturing, and tissue engineering can help researchers in creating in vitro models that closely mimic physiologically conditions. This review highlighted the current TIS challenges and advanced senotherapeutics. Finally, we discussed how to develop reliable in vitro models to better understanding TIS mechanisms.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 4","pages":"142"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00774-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular senescence (CS) is a crucial tumor-suppressive phenomenon, inhibiting proliferation of cancerous cells. However, cancer therapies can also induce tumor cell senescence, generating senescent cells in tumoral and normal tissues. While initially beneficial, these senescent cells can paradoxically contribute to tumor recurrence, metastasis, and therapy resistance via the senescence-associated secretory phenotype (SASP). Due to the diverse and critical roles, cellular senescence could be a potential target in cancer biomedicine. To extend our understanding of therapy-induced senescence (TIS), developing experimental models is necessary. Currently TIS established models can be categorized into animal-based and laboratory models. These models are essential for advancing our knowledge of aging mechanisms and developing new treatment modalities. In vivo models of TIS have faced limitations, including poor immune system representation, oversimplified stromal complexity, and an inability to model functional vascular networks. Incorporating cutting-edge technologies such as 3D cultures, co-culturing, and tissue engineering can help researchers in creating in vitro models that closely mimic physiologically conditions. This review highlighted the current TIS challenges and advanced senotherapeutics. Finally, we discussed how to develop reliable in vitro models to better understanding TIS mechanisms.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.