Evaluation of two algorithms measuring homologous recombination deficiency status in prognostic assessment for treatment-naïve non-small cell lung cancer.
Yidan Ma, Jingyu Huang, Lei He, Jun Du, Longteng Liu, Xiaoguang Li, Peng Jiao, Xiaonan Wu, Wei Zhou, Xiaomao Xu, Li Yang, Jing Di, Changbin Zhu, Lin Li, Dongge Liu, Zheng Wang
{"title":"Evaluation of two algorithms measuring homologous recombination deficiency status in prognostic assessment for treatment-naïve non-small cell lung cancer.","authors":"Yidan Ma, Jingyu Huang, Lei He, Jun Du, Longteng Liu, Xiaoguang Li, Peng Jiao, Xiaonan Wu, Wei Zhou, Xiaomao Xu, Li Yang, Jing Di, Changbin Zhu, Lin Li, Dongge Liu, Zheng Wang","doi":"10.21147/j.issn.1000-9604.2025.03.05","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Patients with homologous recombination deficiency (HRD) demonstrate distinct clinicopathological and prognostic features. However, standardised and clinically validated HRD detection methodologies specifically tailored for non-small cell lung cancer (NSCLC) have yet to be established. Further research is needed to clarify the precise role and clinical implications of HRD in NSCLC.</p><p><strong>Methods: </strong>A cohort of 580 treatment-naïve NSCLC patients was retrospectively enrolled. Comprehensive genomic profiling (CGP) was performed for all patients, and HRD status was evaluated using two genomic scar score (GSS)-based algorithms: a machine learning-based GSS (ML-GSS) and a continuous linear regression-based GSS (CLR-GSS). To assess the diagnostic performance (sensitivity and specificity) of the ML-GSS and CLR-GSS algorithms for HRD detection, immunohistochemical (IHC) staining was conducted for two HRD-related biomarkers: Schlafen 11 (SLFN11) and RAD51. Survival analysis, including progression-free survival (PFS), along with multivariable Cox proportional hazards models, was performed to compare the prognostic value of the two HRD algorithms.</p><p><strong>Results: </strong>Among all patients, 146 (25.2%) and 46 (7.9%) were classified as HRD-positive (HRD+) by ML-GSS and CLR-GSS, respectively. Using SLFN11 IHC expression as the reference standard, comparative analysis demonstrated that ML-GSS exhibited significantly higher sensitivity but lower specificity than CLR-GSS. This trend was consistently observed in RAD51 staining analysis. Compared to HRD-negative (HRD-) patients, ML-GSS-defined HRD+ cases displayed distinct clinicopathological and genomic features, including a higher prevalence of homologous recombination (HR)-related genes mutations, <i>BRCA1/2</i> mutations, <i>TP53</i> mutations, elevated tumor mutation burden (TMB), and increased copy number variations (CNVs). In contrast, CLR-GSS-defined HRD+ patients were only enriched for <i>BRCA1/2</i> mutations, <i>TP53</i> mutations, and elevated TMB. Furthermore, ML-GSS-defined HRD+ status was associated with significantly worse prognosis following first-line therapy compared to HRD- patients. Univariate and multivariable Cox analyses identified ML-GSS-defined HRD+ and <i>TP53</i> mutations as significant predictors and independent risk factors, respectively. No such associations were observed in the CLR-GSS-defined HRD+ cohort.</p><p><strong>Conclusions: </strong>ML-GSS demonstrated superior performance to CLR-GSS in assessing chromosomal instability (CIN) and showed greater clinical utility. We recommend the ML-GSS algorithm as a robust and clinically validated tool for HRD/CIN evaluation in NSCLC. Furthermore, ML-GSS-defined HRD+ status was identified as both a significant predictor and an independent risk factor.</p>","PeriodicalId":9882,"journal":{"name":"Chinese Journal of Cancer Research","volume":"37 3","pages":"352-364"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21147/j.issn.1000-9604.2025.03.05","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Patients with homologous recombination deficiency (HRD) demonstrate distinct clinicopathological and prognostic features. However, standardised and clinically validated HRD detection methodologies specifically tailored for non-small cell lung cancer (NSCLC) have yet to be established. Further research is needed to clarify the precise role and clinical implications of HRD in NSCLC.
Methods: A cohort of 580 treatment-naïve NSCLC patients was retrospectively enrolled. Comprehensive genomic profiling (CGP) was performed for all patients, and HRD status was evaluated using two genomic scar score (GSS)-based algorithms: a machine learning-based GSS (ML-GSS) and a continuous linear regression-based GSS (CLR-GSS). To assess the diagnostic performance (sensitivity and specificity) of the ML-GSS and CLR-GSS algorithms for HRD detection, immunohistochemical (IHC) staining was conducted for two HRD-related biomarkers: Schlafen 11 (SLFN11) and RAD51. Survival analysis, including progression-free survival (PFS), along with multivariable Cox proportional hazards models, was performed to compare the prognostic value of the two HRD algorithms.
Results: Among all patients, 146 (25.2%) and 46 (7.9%) were classified as HRD-positive (HRD+) by ML-GSS and CLR-GSS, respectively. Using SLFN11 IHC expression as the reference standard, comparative analysis demonstrated that ML-GSS exhibited significantly higher sensitivity but lower specificity than CLR-GSS. This trend was consistently observed in RAD51 staining analysis. Compared to HRD-negative (HRD-) patients, ML-GSS-defined HRD+ cases displayed distinct clinicopathological and genomic features, including a higher prevalence of homologous recombination (HR)-related genes mutations, BRCA1/2 mutations, TP53 mutations, elevated tumor mutation burden (TMB), and increased copy number variations (CNVs). In contrast, CLR-GSS-defined HRD+ patients were only enriched for BRCA1/2 mutations, TP53 mutations, and elevated TMB. Furthermore, ML-GSS-defined HRD+ status was associated with significantly worse prognosis following first-line therapy compared to HRD- patients. Univariate and multivariable Cox analyses identified ML-GSS-defined HRD+ and TP53 mutations as significant predictors and independent risk factors, respectively. No such associations were observed in the CLR-GSS-defined HRD+ cohort.
Conclusions: ML-GSS demonstrated superior performance to CLR-GSS in assessing chromosomal instability (CIN) and showed greater clinical utility. We recommend the ML-GSS algorithm as a robust and clinically validated tool for HRD/CIN evaluation in NSCLC. Furthermore, ML-GSS-defined HRD+ status was identified as both a significant predictor and an independent risk factor.
期刊介绍:
Chinese Journal of Cancer Research (CJCR; Print ISSN: 1000-9604; Online ISSN:1993-0631) is published by AME Publishing Company in association with Chinese Anti-Cancer Association.It was launched in March 1995 as a quarterly publication and is now published bi-monthly since February 2013.
CJCR is published bi-monthly in English, and is an international journal devoted to the life sciences and medical sciences. It publishes peer-reviewed original articles of basic investigations and clinical observations, reviews and brief communications providing a forum for the recent experimental and clinical advances in cancer research. This journal is indexed in Science Citation Index Expanded (SCIE), PubMed/PubMed Central (PMC), Scopus, SciSearch, Chemistry Abstracts (CA), the Excerpta Medica/EMBASE, Chinainfo, CNKI, CSCI, etc.