[AI in rehabilitation-application of artificial mental models for personalized medicine].

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Sabine Janzen, Prajvi Saxena, Cicy Agnes, Wolfgang Maaß
{"title":"[AI in rehabilitation-application of artificial mental models for personalized medicine].","authors":"Sabine Janzen, Prajvi Saxena, Cicy Agnes, Wolfgang Maaß","doi":"10.1007/s00103-025-04090-w","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) can support patient-centered care in prevention and rehabilitation. In Germany, almost 1.9 million patients were treated in rehabilitation hospitals in 2023, mostly due to musculoskeletal disorders. The success of rehabilitation depends on cooperation between patient, doctor, and therapist as well as active participation. However, cognitive limitations, language barriers, and psychological factors tackle decision-making and communication abilities of patients. This leads to incomplete or distorted data and impairs individualized therapy. A potential solution approach is to apply artificial mental models (AMMs) that anticipate patients' unknown mental models. These concepts are based on cognitive science theories and world models from AI. AMMs can optimize treatment decisions, correct misjudgments, and thus increase the success of rehabilitation. Particularly in knee rehabilitation, an AI agent can determine how patients perceive their recovery and enable individual adjustments. The BMFTR project FedWELL investigates the use of AMM in rehabilitation. A non-discriminatory base model was developed using data from online forums, user studies, and machine learning models. Initial results show that AI-supported models can predict individual assumptions and expectations of patients within the rehabilitation process and enable personalized therapies. This article presents the research design of the project and reports the first results of the initial survey phase.</p>","PeriodicalId":9562,"journal":{"name":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00103-025-04090-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) can support patient-centered care in prevention and rehabilitation. In Germany, almost 1.9 million patients were treated in rehabilitation hospitals in 2023, mostly due to musculoskeletal disorders. The success of rehabilitation depends on cooperation between patient, doctor, and therapist as well as active participation. However, cognitive limitations, language barriers, and psychological factors tackle decision-making and communication abilities of patients. This leads to incomplete or distorted data and impairs individualized therapy. A potential solution approach is to apply artificial mental models (AMMs) that anticipate patients' unknown mental models. These concepts are based on cognitive science theories and world models from AI. AMMs can optimize treatment decisions, correct misjudgments, and thus increase the success of rehabilitation. Particularly in knee rehabilitation, an AI agent can determine how patients perceive their recovery and enable individual adjustments. The BMFTR project FedWELL investigates the use of AMM in rehabilitation. A non-discriminatory base model was developed using data from online forums, user studies, and machine learning models. Initial results show that AI-supported models can predict individual assumptions and expectations of patients within the rehabilitation process and enable personalized therapies. This article presents the research design of the project and reports the first results of the initial survey phase.

[人工智能在康复中的应用——人工心理模型在个性化医疗中的应用]。
人工智能(AI)可以支持以患者为中心的预防和康复护理。在德国,2023年有近190万患者在康复医院接受治疗,主要是由于肌肉骨骼疾病。康复的成功取决于患者、医生和治疗师的合作以及患者的积极参与。然而,认知限制、语言障碍和心理因素影响了患者的决策和沟通能力。这导致数据不完整或扭曲,并损害个体化治疗。一种潜在的解决方法是应用人工心理模型(AMMs)来预测患者未知的心理模型。这些概念是基于认知科学理论和人工智能的世界模型。AMMs可以优化治疗决策,纠正错误判断,从而提高康复的成功率。特别是在膝关节康复中,人工智能代理可以确定患者如何看待他们的康复并进行个人调整。BMFTR项目FedWELL调查AMM在康复中的应用。使用来自在线论坛、用户研究和机器学习模型的数据开发了一个非歧视性基础模型。初步结果表明,人工智能支持的模型可以预测患者在康复过程中的个体假设和期望,并实现个性化治疗。本文介绍了该项目的研究设计,并报告了初步调查阶段的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
5.90%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Die Monatszeitschrift Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz - umfasst alle Fragestellungen und Bereiche, mit denen sich das öffentliche Gesundheitswesen und die staatliche Gesundheitspolitik auseinandersetzen. Ziel ist es, zum einen über wesentliche Entwicklungen in der biologisch-medizinischen Grundlagenforschung auf dem Laufenden zu halten und zum anderen über konkrete Maßnahmen zum Gesundheitsschutz, über Konzepte der Prävention, Risikoabwehr und Gesundheitsförderung zu informieren. Wichtige Themengebiete sind die Epidemiologie übertragbarer und nicht übertragbarer Krankheiten, der umweltbezogene Gesundheitsschutz sowie gesundheitsökonomische, medizinethische und -rechtliche Fragestellungen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信