Bogdan Capitanescu, Dirk M Hermann, Roxana Surugiu, Raphael Guzman, Denissa Greta Olaru, Aurel Popa-Wagner
{"title":"Advances in brain remodeling, stem cell therapies, and translational barriers in stroke and brain aging.","authors":"Bogdan Capitanescu, Dirk M Hermann, Roxana Surugiu, Raphael Guzman, Denissa Greta Olaru, Aurel Popa-Wagner","doi":"10.1007/s10522-025-10282-3","DOIUrl":null,"url":null,"abstract":"<p><p>As the brain ages, it undergoes a series of molecular and cellular changes that affect its structure and function, contributing to age-related disorders-particularly cerebrovascular diseases and diminished regenerative capacity following ischemic injury. Despite significant research efforts, effective therapies for brain rewiring and functional recovery after cerebral ischemia remain elusive. A deeper understanding of the cellular and molecular mechanisms involved in the post-acute phase of stroke may help identify novel therapeutic strategies for age-associated vascular pathologies. Recent advances have highlighted several promising areas, including epigenetic modifications of the vascular wall, blood-brain barrier remodeling, cell- and subcellular-based therapies, and innovative delivery methods. However, despite encouraging preclinical findings, clinical trials have produced mixed results regarding the safety and efficacy of cell-based interventions. These outcomes suggest that successful stroke therapies in aging populations may require a multistage, integrative approach.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 4","pages":"143"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254094/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10282-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As the brain ages, it undergoes a series of molecular and cellular changes that affect its structure and function, contributing to age-related disorders-particularly cerebrovascular diseases and diminished regenerative capacity following ischemic injury. Despite significant research efforts, effective therapies for brain rewiring and functional recovery after cerebral ischemia remain elusive. A deeper understanding of the cellular and molecular mechanisms involved in the post-acute phase of stroke may help identify novel therapeutic strategies for age-associated vascular pathologies. Recent advances have highlighted several promising areas, including epigenetic modifications of the vascular wall, blood-brain barrier remodeling, cell- and subcellular-based therapies, and innovative delivery methods. However, despite encouraging preclinical findings, clinical trials have produced mixed results regarding the safety and efficacy of cell-based interventions. These outcomes suggest that successful stroke therapies in aging populations may require a multistage, integrative approach.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.