Deterministic Fabrication of Plasmonic Nanostructures on Optical Nanofibers via Blurred Electron Beam Deposition.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Antonio Balena, Marianna D'Amato, Muhammad Fayyaz Kashif, Chengjie Ding, Lucien Belzane, Gaia De Marzo, Hanna Le Jeannic, Massimo De Vittorio, Ferruccio Pisanello, Alberto Bramati
{"title":"Deterministic Fabrication of Plasmonic Nanostructures on Optical Nanofibers via Blurred Electron Beam Deposition.","authors":"Antonio Balena, Marianna D'Amato, Muhammad Fayyaz Kashif, Chengjie Ding, Lucien Belzane, Gaia De Marzo, Hanna Le Jeannic, Massimo De Vittorio, Ferruccio Pisanello, Alberto Bramati","doi":"10.1002/advs.202507004","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel method for the deterministic fabrication of metallic nanostructures with controlled geometry and composition on suspended, single-mode tapered optical nanofibers (TNFs) using a tailored Blurred Electron Beam Induced Deposition (BEBID) technique. TNFs, owing to their subwavelength diameters and intense evanescent fields, offer a unique platform for enhanced light-matter interactions at the nanoscale. However, their mechanical fragility has thus far hindered the integration of plasmonic structures using conventional high-energy deposition methods. BEBID addresses this limitation by deliberately defocusing the electron beam to reduce local mechanical stress, minimize vibration, and prevent fiber damage during deposition, thereby enabling the one-step growth of platinum nanopillars with sub-20 nm spatial precision and high structural fidelity directly on suspended TNFs. The fabricated structures are characterized using SEM, EDX, and their optical properties are investigated through broadband scattering spectra and polarization-resolved measurements, showing strong agreement with Finite-Difference Time-Domain (FDTD) simulations. Numerical modeling further reveals that ordered arrays of nanopillars can shape and direct the scattered field along the fiber axis, enabling directional emission. This work establishes BEBID as a versatile nanofabrication approach for functional photonic architectures on fragile substrates, with direct applications in quantum photonics, nano-optics, and on-fiber plasmonic sensing.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e07004"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202507004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel method for the deterministic fabrication of metallic nanostructures with controlled geometry and composition on suspended, single-mode tapered optical nanofibers (TNFs) using a tailored Blurred Electron Beam Induced Deposition (BEBID) technique. TNFs, owing to their subwavelength diameters and intense evanescent fields, offer a unique platform for enhanced light-matter interactions at the nanoscale. However, their mechanical fragility has thus far hindered the integration of plasmonic structures using conventional high-energy deposition methods. BEBID addresses this limitation by deliberately defocusing the electron beam to reduce local mechanical stress, minimize vibration, and prevent fiber damage during deposition, thereby enabling the one-step growth of platinum nanopillars with sub-20 nm spatial precision and high structural fidelity directly on suspended TNFs. The fabricated structures are characterized using SEM, EDX, and their optical properties are investigated through broadband scattering spectra and polarization-resolved measurements, showing strong agreement with Finite-Difference Time-Domain (FDTD) simulations. Numerical modeling further reveals that ordered arrays of nanopillars can shape and direct the scattered field along the fiber axis, enabling directional emission. This work establishes BEBID as a versatile nanofabrication approach for functional photonic architectures on fragile substrates, with direct applications in quantum photonics, nano-optics, and on-fiber plasmonic sensing.

模糊电子束沉积法在光学纳米纤维上确定制备等离子体纳米结构。
本研究介绍了一种利用定制的模糊电子束诱导沉积(BEBID)技术,在悬浮单模锥形光学纳米纤维(TNFs)上确定制备几何形状和成分可控的金属纳米结构的新方法。由于它们的亚波长直径和强烈的消失场,为纳米尺度上增强光-物质相互作用提供了一个独特的平台。然而,它们的机械脆弱性迄今为止阻碍了使用传统高能沉积方法集成等离子体结构。BEBID解决了这一限制,通过故意散焦电子束来减少局部机械应力,最小化振动,防止沉积过程中的纤维损伤,从而使铂纳米柱的一步生长具有低于20纳米的空间精度和高结构保真度,直接在悬浮的tnf上。利用扫描电镜(SEM)和EDX对制备的结构进行了表征,并通过宽带散射光谱和偏振分辨测量对其光学特性进行了研究,结果与时域有限差分(FDTD)模拟结果非常吻合。数值模拟进一步表明,有序的纳米柱阵列可以沿着光纤轴方向塑造和引导散射场,从而实现定向发射。这项工作建立了BEBID作为一种多功能的纳米制造方法,用于在脆弱基片上的功能光子结构,并直接应用于量子光子学,纳米光学和光纤等离子体传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信