Jiwen Hu, Hong Wang, Xin Zhang, Chunfei Wang, Anna du Rietz, Mengtao Rong, Caroline Brommesson, Xiongyu Wu, Zhanxiao Wei, Ruilong Zhang, Xuanjun Zhang, Kajsa Uvdal, Zhangjun Hu
{"title":"Real-Time Monitoring of Adenosine Triphosphate Fluctuation in Lysosome during Autophagy/Mitophagy.","authors":"Jiwen Hu, Hong Wang, Xin Zhang, Chunfei Wang, Anna du Rietz, Mengtao Rong, Caroline Brommesson, Xiongyu Wu, Zhanxiao Wei, Ruilong Zhang, Xuanjun Zhang, Kajsa Uvdal, Zhangjun Hu","doi":"10.1021/acsami.5c07496","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy, a lysosomal degradation pathway critical for cell survival, differentiation, development, and maintaining homeostasis, plays a crucial role in cellular health. Maintaining an adequate level of adenosine triphosphate (ATP), the central molecule in energy metabolism, is equally essential for these processes. However, the interplay between autophagy and energy metabolism remains incompletely understood due to technical challenges, including the need for high-precision, dynamic detection within organelles, and sensitivity to the acidic lysosomal environment. To address these limitations, we developed HR-MP, a ratiometric fluorogenic nanoprobe specifically designed for visualizing ATP levels in acidic lysosomes during autophagy. HR-MP exhibits selective, rapid, and quantitative ATP detection <i>in vitro</i>, allowing it to quantitatively monitor lysosomal ATP fluctuations in complex biological environments with excellent biocompatibility, membrane permeability, and lysosome-targeting ability. Importantly, HR-MP enables real-time tracking of ATP fluctuations during starvation- or drug-induced autophagy in living cells, providing a powerful tool for elucidating the links between autophagy and energy metabolism.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c07496","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Autophagy, a lysosomal degradation pathway critical for cell survival, differentiation, development, and maintaining homeostasis, plays a crucial role in cellular health. Maintaining an adequate level of adenosine triphosphate (ATP), the central molecule in energy metabolism, is equally essential for these processes. However, the interplay between autophagy and energy metabolism remains incompletely understood due to technical challenges, including the need for high-precision, dynamic detection within organelles, and sensitivity to the acidic lysosomal environment. To address these limitations, we developed HR-MP, a ratiometric fluorogenic nanoprobe specifically designed for visualizing ATP levels in acidic lysosomes during autophagy. HR-MP exhibits selective, rapid, and quantitative ATP detection in vitro, allowing it to quantitatively monitor lysosomal ATP fluctuations in complex biological environments with excellent biocompatibility, membrane permeability, and lysosome-targeting ability. Importantly, HR-MP enables real-time tracking of ATP fluctuations during starvation- or drug-induced autophagy in living cells, providing a powerful tool for elucidating the links between autophagy and energy metabolism.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.