Optimizing Hydrogen Adsorption and Promoting Hydroxyl Transfer Using Ru-Loaded, Ni-Encapsulated Carbon Nanotubes to Boost Alkaline Hydrogen Evolution.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-07-23 Epub Date: 2025-07-10 DOI:10.1021/acsami.5c10494
Jiahao Zhou, Yuchen Yue, Qian Zhang, Jiacheng Wang, Hua Wang, Guifu Zuo
{"title":"Optimizing Hydrogen Adsorption and Promoting Hydroxyl Transfer Using Ru-Loaded, Ni-Encapsulated Carbon Nanotubes to Boost Alkaline Hydrogen Evolution.","authors":"Jiahao Zhou, Yuchen Yue, Qian Zhang, Jiacheng Wang, Hua Wang, Guifu Zuo","doi":"10.1021/acsami.5c10494","DOIUrl":null,"url":null,"abstract":"<p><p>The hydrogen evolution reaction (HER) under alkaline conditions exhibits significant potential for industrial hydrogen production. However, effectively coordinating the multistep processes in alkaline solutions, including water dissociation, hydroxyl desorption, and hydrogen generation, remains a critical challenge. This work develops a three-dimensional nanocomposite electrocatalyst composed of <i>in situ</i>-grown carbon nanotubes (CNTs), nickel nanoparticles encapsulated within them, and ruthenium nanoclusters on the surface. The catalyst synergistically facilitates water dissociation, hydroxyl transfer, and hydrogen adsorption, thereby achieving an ultralow overpotential (9.2 mV at 10 mA cm<sup>-2</sup>) for alkaline HER. Density functional theory reveals that CNTs facilitate electron transfer with minimal charge transfer resistance, while Ni nanoparticles within CNTs not only optimize the hydrogen adsorption of Ru but also facilitate the transformation of adsorbed hydroxyl (OH<sub>ad</sub>) to OH<sup>-</sup>. These factors collectively facilitated the OH<sub>ad</sub> + e<sup>-</sup> ⇌ OH<sup>-</sup> process, improving the kinetics of the HER. A solar-panel-powered electrolyzer equipped with this composite electrode achieves a low cell voltage of 1.41 V. This research provides valuable insights on designing Ru-based catalysts in practical alkaline HER applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"42042-42051"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c10494","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogen evolution reaction (HER) under alkaline conditions exhibits significant potential for industrial hydrogen production. However, effectively coordinating the multistep processes in alkaline solutions, including water dissociation, hydroxyl desorption, and hydrogen generation, remains a critical challenge. This work develops a three-dimensional nanocomposite electrocatalyst composed of in situ-grown carbon nanotubes (CNTs), nickel nanoparticles encapsulated within them, and ruthenium nanoclusters on the surface. The catalyst synergistically facilitates water dissociation, hydroxyl transfer, and hydrogen adsorption, thereby achieving an ultralow overpotential (9.2 mV at 10 mA cm-2) for alkaline HER. Density functional theory reveals that CNTs facilitate electron transfer with minimal charge transfer resistance, while Ni nanoparticles within CNTs not only optimize the hydrogen adsorption of Ru but also facilitate the transformation of adsorbed hydroxyl (OHad) to OH-. These factors collectively facilitated the OHad + e- ⇌ OH- process, improving the kinetics of the HER. A solar-panel-powered electrolyzer equipped with this composite electrode achieves a low cell voltage of 1.41 V. This research provides valuable insights on designing Ru-based catalysts in practical alkaline HER applications.

负载钌、镍包封的碳纳米管优化氢吸附和促进羟基转移以促进碱性氢的生成。
碱性条件下的析氢反应(HER)在工业制氢方面具有巨大的潜力。然而,如何有效地协调碱性溶液中的多步骤过程,包括水解离、羟基脱附和制氢,仍然是一个关键的挑战。本研究开发了一种三维纳米复合电催化剂,由原位生长的碳纳米管(cnt)、包裹在其中的镍纳米粒子和表面的钌纳米团簇组成。催化剂协同促进水解离、羟基转移和氢吸附,从而实现碱性HER的超低过电位(10 mA cm-2时9.2 mV)。密度泛函理论表明,CNTs有利于电子转移,电荷转移阻力最小,而CNTs内的Ni纳米颗粒不仅优化了Ru对氢的吸附,而且有利于吸附的羟基(OHad)向OH-的转化。这些因素共同促进了OHad + e- + OH-过程,改善了HER的动力学。配备这种复合电极的太阳能电池板供电的电解槽可实现1.41 V的低电池电压。本研究为在实际碱性HER应用中设计钌基催化剂提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信