Construction of Polyionic Liquid Coating Layer Enables High Cyclic Stability of 4.5 V LiCoO2 Cathode by In Situ Polymerization.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-07-23 Epub Date: 2025-07-11 DOI:10.1021/acsami.5c06988
Dejun Li, Haifeng Tu, Shiqi Zhang, Yuyue Guo, Jiawei Zhao, Xianshu Cai, Jiang-Yan Xue, Suwan Lu, Lingwang Liu, Xin Zhang, Keyang Peng, Jingjing Xu, Xiaodong Wu
{"title":"Construction of Polyionic Liquid Coating Layer Enables High Cyclic Stability of 4.5 V LiCoO<sub>2</sub> Cathode by In Situ Polymerization.","authors":"Dejun Li, Haifeng Tu, Shiqi Zhang, Yuyue Guo, Jiawei Zhao, Xianshu Cai, Jiang-Yan Xue, Suwan Lu, Lingwang Liu, Xin Zhang, Keyang Peng, Jingjing Xu, Xiaodong Wu","doi":"10.1021/acsami.5c06988","DOIUrl":null,"url":null,"abstract":"<p><p>The pursuit of high-energy-density portable electronic applications has intensified the development of high-voltage LiCoO<sub>2</sub> (LCO) cathodes. However, the LCO cathode undergoes severe side reactions with the electrolyte at elevated cutoff voltages, leading to significant interface degradation and structural collapse. Modifying the cathode/electrolyte interface is a very good strategy to restrain interfacial side reactions and stabilize the structure. Herein, we proposed a high-voltage-stable polyionic liquid (PIL) as an artificial solid electrolyte interface, achieved by in situ bulk polymerization of a diallyldimethylammonium bis(trifluoromethanesulfonyl)imide (DMDA) monomer to form a polymer-containing cross-linked structure on the LCO cathode surface. The polymerized DMDA (PDMDA) coating layer forms a thin, dense cathode-electrolyte interphase (CEI) that effectively isolates the LCO from direct contact with the electrolyte and suppresses side reactions. Consequently, the PDMDA-modified LCO cathode retains 80% of its initial capacity over 500 cycles at 1C within a voltage range of 3 to 4.5 V, significantly outperforming the bare-LCO cathode. Additionally, the PDMDA layer also enhances the thermal stability of the LCO cathode, offering substantial value for safe lithium battery applications. This PDMDA modification strategy provides a promising pathway for practical deployment of high-voltage LCO cathodes.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"42268-42277"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c06988","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of high-energy-density portable electronic applications has intensified the development of high-voltage LiCoO2 (LCO) cathodes. However, the LCO cathode undergoes severe side reactions with the electrolyte at elevated cutoff voltages, leading to significant interface degradation and structural collapse. Modifying the cathode/electrolyte interface is a very good strategy to restrain interfacial side reactions and stabilize the structure. Herein, we proposed a high-voltage-stable polyionic liquid (PIL) as an artificial solid electrolyte interface, achieved by in situ bulk polymerization of a diallyldimethylammonium bis(trifluoromethanesulfonyl)imide (DMDA) monomer to form a polymer-containing cross-linked structure on the LCO cathode surface. The polymerized DMDA (PDMDA) coating layer forms a thin, dense cathode-electrolyte interphase (CEI) that effectively isolates the LCO from direct contact with the electrolyte and suppresses side reactions. Consequently, the PDMDA-modified LCO cathode retains 80% of its initial capacity over 500 cycles at 1C within a voltage range of 3 to 4.5 V, significantly outperforming the bare-LCO cathode. Additionally, the PDMDA layer also enhances the thermal stability of the LCO cathode, offering substantial value for safe lithium battery applications. This PDMDA modification strategy provides a promising pathway for practical deployment of high-voltage LCO cathodes.

聚离子液体涂层的构建使原位聚合法制备的4.5 V LiCoO2阴极具有较高的循环稳定性。
对高能量密度便携式电子应用的追求加强了高压LiCoO2 (LCO)阴极的发展。然而,在较高的截止电压下,LCO阴极会与电解质发生严重的副反应,导致界面退化和结构崩溃。改变阴极/电解质界面是抑制界面副反应和稳定结构的一种很好的策略。在此,我们提出了一种高压稳定的聚离子液体(PIL)作为人工固体电解质界面,通过双烯丙基二甲基二(三氟甲烷磺酰)亚胺(DMDA)单体的原位本体聚合,在LCO阴极表面形成含聚合物的交联结构。聚合的DMDA (PDMDA)涂层形成薄而致密的阴极-电解质界面(CEI),有效地隔离了LCO与电解质的直接接触并抑制了副反应。因此,pdmda修饰的LCO阴极在3到4.5 V的电压范围内,在1C下500次循环中保持80%的初始容量,显著优于裸LCO阴极。此外,PDMDA层还提高了LCO阴极的热稳定性,为安全锂电池应用提供了巨大的价值。这种PDMDA修饰策略为高压LCO阴极的实际部署提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信