Diffusive Equilibrium: Modeling Anisotropic Maxwellian and Kappa Field Line Distributions in Io's Plasma Torus Using Multi-Fluid and Kinetic Approaches

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Edward G. Nerney
{"title":"Diffusive Equilibrium: Modeling Anisotropic Maxwellian and Kappa Field Line Distributions in Io's Plasma Torus Using Multi-Fluid and Kinetic Approaches","authors":"Edward G. Nerney","doi":"10.1029/2024JA033582","DOIUrl":null,"url":null,"abstract":"<p>Modeling density distributions along Jupiter's magnetic field lines is essential for understanding the Io plasma torus, moon plasma interactions, and plasma throughout the magnetosphere. This study compares multi-fluid and kinetic approaches to diffusive equilibrium and the effects of different plasma distribution functions and anisotropy. We establish a nominal equatorial centrifugal radial model of plasma densities and temperatures in the Io plasma torus (5–10 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>J</mi>\n </msub>\n </mrow>\n <annotation> ${R}_{J}$</annotation>\n </semantics></math>) and define six cases representing combinations of distribution functions (Maxwellian, standard Kappa, product Kappa, and “Fried-Egg”) and anisotropy parameters. We are the first to apply this to the product bi-kappa distribution to determine the steady-state variation of densities and temperatures along field lines. Our results show that the choice of plasma distribution function significantly affects predicted densities and temperatures along field lines. Anisotropy in temperatures influences plasma density distributions, impacting scale heights and peak densities. Different assumptions lead to different predictions for plasma conditions at various latitudes, especially along field lines intersecting Io's and Europa's orbits. These findings highlight the importance of selecting appropriate plasma distribution models tailored to Jupiter's magnetospheric conditions. Accurate plasma modeling is crucial for interpreting observations and understanding wave propagation, energy transport, and magnetospheric processes. We demonstrate practical applications by calculating Alfvén speeds and travel times, simulating spectral emissions using the CHIANTI atomic database, and calculating <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> $N{L}^{2}$</annotation>\n </semantics></math> profiles to investigate diffusion processes. Our analysis aids in selecting suitable plasma distribution models for different regions within Jupiter's magnetosphere, supporting future studies of the Io plasma torus and its interactions with Jupiter's moons.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033582","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033582","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling density distributions along Jupiter's magnetic field lines is essential for understanding the Io plasma torus, moon plasma interactions, and plasma throughout the magnetosphere. This study compares multi-fluid and kinetic approaches to diffusive equilibrium and the effects of different plasma distribution functions and anisotropy. We establish a nominal equatorial centrifugal radial model of plasma densities and temperatures in the Io plasma torus (5–10 R J ${R}_{J}$ ) and define six cases representing combinations of distribution functions (Maxwellian, standard Kappa, product Kappa, and “Fried-Egg”) and anisotropy parameters. We are the first to apply this to the product bi-kappa distribution to determine the steady-state variation of densities and temperatures along field lines. Our results show that the choice of plasma distribution function significantly affects predicted densities and temperatures along field lines. Anisotropy in temperatures influences plasma density distributions, impacting scale heights and peak densities. Different assumptions lead to different predictions for plasma conditions at various latitudes, especially along field lines intersecting Io's and Europa's orbits. These findings highlight the importance of selecting appropriate plasma distribution models tailored to Jupiter's magnetospheric conditions. Accurate plasma modeling is crucial for interpreting observations and understanding wave propagation, energy transport, and magnetospheric processes. We demonstrate practical applications by calculating Alfvén speeds and travel times, simulating spectral emissions using the CHIANTI atomic database, and calculating N L 2 $N{L}^{2}$ profiles to investigate diffusion processes. Our analysis aids in selecting suitable plasma distribution models for different regions within Jupiter's magnetosphere, supporting future studies of the Io plasma torus and its interactions with Jupiter's moons.

Abstract Image

扩散平衡:用多流体和动力学方法模拟木卫一等离子体环面各向异性麦克斯韦和卡帕场线分布
模拟沿木星磁场线的密度分布对于理解木卫一等离子体环面、卫星等离子体相互作用以及整个磁层的等离子体至关重要。本文比较了多流体和动力学方法对扩散平衡的影响,以及不同等离子体分布函数和各向异性的影响。我们建立了木卫一等离子体环面(5-10 R J ${R}_{J}$)等离子体密度和温度的名义赤道离心径向模型,并定义了6种分布函数(麦克斯韦分布函数、标准Kappa分布函数、乘积Kappa分布函数和“frid - egg”分布函数)和各向异性参数的组合。我们是第一个将此应用于产品bi-kappa分布以确定密度和温度沿场线的稳态变化的人。结果表明,等离子体分布函数的选择显著影响了沿场线的密度和温度预测。温度的各向异性影响等离子体密度分布,影响尺度高度和峰值密度。不同的假设导致了对不同纬度等离子体条件的不同预测,特别是在木卫一和木卫二轨道相交的磁场线上。这些发现突出了选择适合木星磁层条件的等离子体分布模型的重要性。准确的等离子体模型对于解释观测结果和理解波传播、能量输运和磁层过程至关重要。我们通过计算alfv速度和行进时间,使用CHIANTI原子数据库模拟光谱发射,以及计算N l2 $N{L}^{2}$剖面来研究扩散过程来演示实际应用。我们的分析有助于为木星磁层内不同区域选择合适的等离子体分布模型,支持未来对木卫一等离子体环面及其与木星卫星相互作用的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信