Line-of-Sight Guidance: Learning to Look Ahead in Three Dimensions

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Eirik L. Foseid;Henrik M. Schmidt-Didlaukies;Erlend A. Basso;Kristin Y. Pettersen;Jan Tommy Gravdahl
{"title":"Line-of-Sight Guidance: Learning to Look Ahead in Three Dimensions","authors":"Eirik L. Foseid;Henrik M. Schmidt-Didlaukies;Erlend A. Basso;Kristin Y. Pettersen;Jan Tommy Gravdahl","doi":"10.1109/LCSYS.2025.3579758","DOIUrl":null,"url":null,"abstract":"This letter investigates line-of-sight (LOS) guidance algorithms for three-dimensional path-following. We prove that a spatial LOS guidance algorithm ensures input-to-state stability (ISS) of the closed-loop system with respect to the lateral velocity. Building on this theoretical foundation, we propose an enhanced LOS algorithm where the lookahead distance is parameterized using a neural network. This approach optimizes performance based on vehicle states and local path characteristics, which serve as inputs to the neural network, while preserving the stability guarantees. The effectiveness of our proposed method is validated through a simulation study using a high-fidelity six degree-of-freedom model of an autonomous underwater vehicle (AUV), demonstrating improved path-following performance while maintaining the stability guarantees of the original approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1387-1392"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11036772/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter investigates line-of-sight (LOS) guidance algorithms for three-dimensional path-following. We prove that a spatial LOS guidance algorithm ensures input-to-state stability (ISS) of the closed-loop system with respect to the lateral velocity. Building on this theoretical foundation, we propose an enhanced LOS algorithm where the lookahead distance is parameterized using a neural network. This approach optimizes performance based on vehicle states and local path characteristics, which serve as inputs to the neural network, while preserving the stability guarantees. The effectiveness of our proposed method is validated through a simulation study using a high-fidelity six degree-of-freedom model of an autonomous underwater vehicle (AUV), demonstrating improved path-following performance while maintaining the stability guarantees of the original approach.
视线引导:学习在三维空间中向前看
这封信研究了三维路径跟踪的视线(LOS)制导算法。证明了空间LOS制导算法能保证闭环系统相对于横向速度的输入状态稳定性(ISS)。在此理论基础上,我们提出了一种增强的LOS算法,其中使用神经网络参数化前瞻距离。该方法基于车辆状态和局部路径特征(作为神经网络的输入)优化性能,同时保持稳定性保证。通过使用自主水下航行器(AUV)的高保真六自由度模型进行仿真研究,验证了我们提出的方法的有效性,在保持原始方法稳定性保证的同时,展示了改进的路径跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信