Improved Asymptotic Variance of the Associated Rician Phase Distribution

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Jolyon M. De Freitas
{"title":"Improved Asymptotic Variance of the Associated Rician Phase Distribution","authors":"Jolyon M. De Freitas","doi":"10.1109/LCOMM.2025.3572330","DOIUrl":null,"url":null,"abstract":"Whilst many common phase distributions have well-defined closed-form variance expressions, the well-known Rician phase (or Blachman-Bennett) distribution does not have any similar known expression. This Letter presents an asymptotic closed-form expression for the variance of the Rician phase distribution that is a significant improvement on existing expressions and straightforward to use. This new result takes advantage of the incomplete <inline-formula> <tex-math>${}_{3}\\mathcal {F}_{1}$ </tex-math></inline-formula> hypergeometric function. We also introduce a normalized full-width half maximum (FWHM) figure of merit and the information theoretic-based Bhattarcharyya distance in a complementary way, in order to compare and characterize the Normal and the Rician phase noise distribution. MSC 2020: 41A60, 33B20, 33C90; OCIS: 060.5060, 120.3180,17 120.5050.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 7","pages":"1714-1718"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11008913/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Whilst many common phase distributions have well-defined closed-form variance expressions, the well-known Rician phase (or Blachman-Bennett) distribution does not have any similar known expression. This Letter presents an asymptotic closed-form expression for the variance of the Rician phase distribution that is a significant improvement on existing expressions and straightforward to use. This new result takes advantage of the incomplete ${}_{3}\mathcal {F}_{1}$ hypergeometric function. We also introduce a normalized full-width half maximum (FWHM) figure of merit and the information theoretic-based Bhattarcharyya distance in a complementary way, in order to compare and characterize the Normal and the Rician phase noise distribution. MSC 2020: 41A60, 33B20, 33C90; OCIS: 060.5060, 120.3180,17 120.5050.
相关相位分布的改进渐近方差
虽然许多常见的相位分布具有定义良好的闭形式方差表达式,但众所周知的专家相位(或Blachman-Bennett)分布没有任何类似的已知表达式。这封信提出了一个渐近的封闭形式的表达式,对现有的表达式有了很大的改进,并且使用起来很简单。这个新结果利用了不完全${}_{3}\mathcal {F}_{1}$超几何函数。我们还引入了一种归一化的全宽半最大值(FWHM)优值图和基于信息论的Bhattarcharyya距离,以互补的方式来比较和表征正态和正交相位噪声分布。MSC 2020: 41a60, 33b20, 33c90;Ocis: 060.5060, 120.3180,17 120.5050。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信