Globally smooth lemniscate trajectory with adaptive integral terminal sliding mode control and inversion-based hysteresis compensation for pi ezoelectric stage precise tracking
Jim-Wei Wu (Senior Member IEEE) , Ting-Kuei Hsu , Jia-Cheng Li , Yu-Han Lin , Sung-Hua Chen
{"title":"Globally smooth lemniscate trajectory with adaptive integral terminal sliding mode control and inversion-based hysteresis compensation for pi ezoelectric stage precise tracking","authors":"Jim-Wei Wu (Senior Member IEEE) , Ting-Kuei Hsu , Jia-Cheng Li , Yu-Han Lin , Sung-Hua Chen","doi":"10.1016/j.conengprac.2025.106486","DOIUrl":null,"url":null,"abstract":"<div><div>High-precision measurement systems use an <em>xy</em>-axis piezoelectric scanner following a pre-determined trajectory to achieve three-dimensional scanning at micro/nano-scales. Most systems employ a raster scanning trajectory due to ease of implementation; however, raster scanning generates infinite odd harmonics, which can induce mechanical resonance leading to image distortion. Moreover, the nonlinear response characteristics of piezoelectric materials frequently result in unexpected displacements. This paper presents a novel sequential scanning trajectory that eliminates the need for a step function and minimizes the risk of mapping errors. An advanced controller combining an inverse hysteresis model with adaptive integral terminal sliding mode control (AITSMC) was developed and first applied in the piezoelectric scanner through theoretical derivation and stability analysis to prove its feasibility. In simulations and experiments, the proposed controller significantly mitigated the effects of hysteresis during trajectory tracking and achieved superior tracking accuracy and lower RMSE compared to existing sliding mode controllers.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"164 ","pages":"Article 106486"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125002485","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
High-precision measurement systems use an xy-axis piezoelectric scanner following a pre-determined trajectory to achieve three-dimensional scanning at micro/nano-scales. Most systems employ a raster scanning trajectory due to ease of implementation; however, raster scanning generates infinite odd harmonics, which can induce mechanical resonance leading to image distortion. Moreover, the nonlinear response characteristics of piezoelectric materials frequently result in unexpected displacements. This paper presents a novel sequential scanning trajectory that eliminates the need for a step function and minimizes the risk of mapping errors. An advanced controller combining an inverse hysteresis model with adaptive integral terminal sliding mode control (AITSMC) was developed and first applied in the piezoelectric scanner through theoretical derivation and stability analysis to prove its feasibility. In simulations and experiments, the proposed controller significantly mitigated the effects of hysteresis during trajectory tracking and achieved superior tracking accuracy and lower RMSE compared to existing sliding mode controllers.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.