Weifeng Zhang , Tiancheng Chen , Yazhuo Hu , Xuejia Li , Xizhi Shi , Yongbo Bao
{"title":"Soluble expression and functional characterization of multi-subunit hemoglobins from the blood clam, Tegillarca granosa","authors":"Weifeng Zhang , Tiancheng Chen , Yazhuo Hu , Xuejia Li , Xizhi Shi , Yongbo Bao","doi":"10.1016/j.cbpb.2025.111125","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>Escherichia coli</em> expression system, combined with site-directed mutagenesis, is a powerful tool for investigating the structure-function relationship of hemoglobin (Hb). However, producing biologically active recombinant hemoglobin (rHb) from invertebrates, especially in multimeric forms, remains difficult. Here, we describe the recombinant expression, purification, and characterization of homodimeric rHbI and heterotetrameric rHbII from the blood clam <em>Tegillarca granosa</em>. Optimization of expression conditions demonstrated that high yields (65.4–135.6 g/L) of soluble <em>T. granosa</em> rHbs could be achieved using the JM109(DE3) strain with 15 °C induction, 0.25 mM isopropyl β-D-thiogalactoside (IPTG) levels, and codon optimization. Circular dichroism and ultraviolet-visible spectroscopy verified that purified rHbs exhibited a secondary structure similar to that of native Hbs (nHbs) and preserved their diverse ligand-binding capacities. Oxygen-binding assays further showed that the oxygen affinity of rHbs was comparable to that of nHbs. Nitrite reduction assays revealed that <em>T. granosa</em> nHbs exhibited weak nitrite reductase activity (0.049–0.116 M<sup>−1</sup> s<sup>−1</sup> at 25 °C), generally lower than that of vertebrate globins. However, rHbs, particularly rHbI, displayed substantially higher reduction rate constants (0.147–4.589 M<sup>−1</sup> s<sup>−1</sup> at 25 °C) than nHbs, possibly due to differences in structural conformation or the N-terminal tag carried by rHbs. Overall, the recombinant expression and purification method established in this study provides a valuable framework for future research on the structure-function relationships of <em>T. granosa</em> Hb and invertebrate Hbs more broadly.</div></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"279 ","pages":"Article 111125"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495925000569","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Escherichia coli expression system, combined with site-directed mutagenesis, is a powerful tool for investigating the structure-function relationship of hemoglobin (Hb). However, producing biologically active recombinant hemoglobin (rHb) from invertebrates, especially in multimeric forms, remains difficult. Here, we describe the recombinant expression, purification, and characterization of homodimeric rHbI and heterotetrameric rHbII from the blood clam Tegillarca granosa. Optimization of expression conditions demonstrated that high yields (65.4–135.6 g/L) of soluble T. granosa rHbs could be achieved using the JM109(DE3) strain with 15 °C induction, 0.25 mM isopropyl β-D-thiogalactoside (IPTG) levels, and codon optimization. Circular dichroism and ultraviolet-visible spectroscopy verified that purified rHbs exhibited a secondary structure similar to that of native Hbs (nHbs) and preserved their diverse ligand-binding capacities. Oxygen-binding assays further showed that the oxygen affinity of rHbs was comparable to that of nHbs. Nitrite reduction assays revealed that T. granosa nHbs exhibited weak nitrite reductase activity (0.049–0.116 M−1 s−1 at 25 °C), generally lower than that of vertebrate globins. However, rHbs, particularly rHbI, displayed substantially higher reduction rate constants (0.147–4.589 M−1 s−1 at 25 °C) than nHbs, possibly due to differences in structural conformation or the N-terminal tag carried by rHbs. Overall, the recombinant expression and purification method established in this study provides a valuable framework for future research on the structure-function relationships of T. granosa Hb and invertebrate Hbs more broadly.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.