Differential Distributions: A refined methodology to indirect reference interval estimation by including Patient's health status according to associated ICD-10 codes
David Schär , Tobias U. Blatter , Harald Witte , Jivko Stoyanov , Martin Hersberger , Christos T. Nakas , Alexander B. Leichtle
{"title":"Differential Distributions: A refined methodology to indirect reference interval estimation by including Patient's health status according to associated ICD-10 codes","authors":"David Schär , Tobias U. Blatter , Harald Witte , Jivko Stoyanov , Martin Hersberger , Christos T. Nakas , Alexander B. Leichtle","doi":"10.1016/j.plabm.2025.e00492","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Traditional methods for estimating reference intervals (RIs) using patient's blood test results from the clinical routine, typically remove outliers without considering the nuanced health statuses of patients. This removes a vast majority of test results for reference interval estimation without considering the actual health status of the patient.</div></div><div><h3>Methods</h3><div>We introduce the Differential Distribution Method (DDM) which uses laboratory routine data coded with ICD-10 to approximate an underlying non-diseased age and sex stratified population from mixed clinical data. By removing test results that stem from subpopulations significantly different from the general population, reference intervals can be generated stratified by sex and age, taking into account the associated health conditions of the patients as derived by the ICD-10 coding system.</div></div><div><h3>Results</h3><div>Applying the DDM to blood plasma potassium levels demonstrated its ability to adjust RIs dynamically across different patient groups. The method effectively differentiated RIs in a decade-based stratification, showing significant variability and tighter confidence intervals, particularly in older (above 60 years old) adults. The RIs were slightly wider with advancing age in both males and females, while their standard deviation was reduced by removing large portions of test results differing significantly, grouped by either their individual ICD-10 code or clusters of ICD-10 codes.</div></div><div><h3>Conclusions</h3><div>This DDM data mining approach offers a robust framework for RI inference by generating adjusted RIs that incorporate clinical nuances reflected in ICD-10 codes. This approach not only enhances the accuracy of patient diagnostics but also facilitates the identification of potential multimorbidities affecting laboratory results.</div></div>","PeriodicalId":20421,"journal":{"name":"Practical Laboratory Medicine","volume":"46 ","pages":"Article e00492"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Laboratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352551725000459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Traditional methods for estimating reference intervals (RIs) using patient's blood test results from the clinical routine, typically remove outliers without considering the nuanced health statuses of patients. This removes a vast majority of test results for reference interval estimation without considering the actual health status of the patient.
Methods
We introduce the Differential Distribution Method (DDM) which uses laboratory routine data coded with ICD-10 to approximate an underlying non-diseased age and sex stratified population from mixed clinical data. By removing test results that stem from subpopulations significantly different from the general population, reference intervals can be generated stratified by sex and age, taking into account the associated health conditions of the patients as derived by the ICD-10 coding system.
Results
Applying the DDM to blood plasma potassium levels demonstrated its ability to adjust RIs dynamically across different patient groups. The method effectively differentiated RIs in a decade-based stratification, showing significant variability and tighter confidence intervals, particularly in older (above 60 years old) adults. The RIs were slightly wider with advancing age in both males and females, while their standard deviation was reduced by removing large portions of test results differing significantly, grouped by either their individual ICD-10 code or clusters of ICD-10 codes.
Conclusions
This DDM data mining approach offers a robust framework for RI inference by generating adjusted RIs that incorporate clinical nuances reflected in ICD-10 codes. This approach not only enhances the accuracy of patient diagnostics but also facilitates the identification of potential multimorbidities affecting laboratory results.
期刊介绍:
Practical Laboratory Medicine is a high-quality, peer-reviewed, international open-access journal publishing original research, new methods and critical evaluations, case reports and short papers in the fields of clinical chemistry and laboratory medicine. The objective of the journal is to provide practical information of immediate relevance to workers in clinical laboratories. The primary scope of the journal covers clinical chemistry, hematology, molecular biology and genetics relevant to laboratory medicine, microbiology, immunology, therapeutic drug monitoring and toxicology, laboratory management and informatics. We welcome papers which describe critical evaluations of biomarkers and their role in the diagnosis and treatment of clinically significant disease, validation of commercial and in-house IVD methods, method comparisons, interference reports, the development of new reagents and reference materials, reference range studies and regulatory compliance reports. Manuscripts describing the development of new methods applicable to laboratory medicine (including point-of-care testing) are particularly encouraged, even if preliminary or small scale.