A characterization of graphs with two types of eigenvalue multiplicities equal to n−d−1

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Songnian Xu , Jinxing Zhao
{"title":"A characterization of graphs with two types of eigenvalue multiplicities equal to n−d−1","authors":"Songnian Xu ,&nbsp;Jinxing Zhao","doi":"10.1016/j.dam.2025.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>For a connected graph <span><math><mi>G</mi></math></span> with order <span><math><mi>n</mi></math></span>, let <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the number of distinct eigenvalues of <span><math><mi>G</mi></math></span>, and let <span><math><mi>d</mi></math></span> represent its diameter. We denote the eigenvalue multiplicity of an eigenvalue <span><math><mi>λ</mi></math></span> in <span><math><mi>G</mi></math></span> by <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span>. It is well established that the inequality <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span> implies that if <span><math><mi>λ</mi></math></span> is an eigenvalue of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, then <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>≤</mo><mi>n</mi><mo>−</mo><mi>d</mi></mrow></math></span>; otherwise, for any real number <span><math><mi>λ</mi></math></span>, we have <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>≤</mo><mi>n</mi><mo>−</mo><mi>d</mi><mo>−</mo><mn>1</mn></mrow></math></span>. A graph is termed <em>minimal</em> if <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span>. In 2013, Wong et al. characterized all minimal graphs for which <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mi>n</mi><mo>−</mo><mi>d</mi></mrow></math></span>. In this article, we provide a complete characterization of graphs satisfying <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>=</mo><mi>n</mi><mo>−</mo><mi>d</mi><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>λ</mi><mo>=</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>λ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 37-48"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003865","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a connected graph G with order n, let e(G) denote the number of distinct eigenvalues of G, and let d represent its diameter. We denote the eigenvalue multiplicity of an eigenvalue λ in G by mG(λ). It is well established that the inequality e(G)d+1 implies that if λ is an eigenvalue of Pd+1, then mG(λ)nd; otherwise, for any real number λ, we have mG(λ)nd1. A graph is termed minimal if e(G)=d+1. In 2013, Wong et al. characterized all minimal graphs for which mG(0)=nd. In this article, we provide a complete characterization of graphs satisfying mG(λ)=nd1 for λ=0 or λ=1.
具有两种特征值多重度等于n−d−1的图的表征
对于n阶连通图G,设e(G)表示G的不同特征值的个数,设d表示其直径。我们用mG(λ)表示G中特征值λ的特征值多重性。不等式e(G)≥d+1表明,如果λ是Pd+1的特征值,则mG(λ)≤n−d;否则,对于任意实数λ,有mG(λ)≤n−d−1。当e(G)=d+1时,称为极小图。2013年,Wong等人描述了mG(0)=n−d的所有极小图。在本文中,我们给出了对于λ=0或λ= - 1满足mG(λ)=n−d−1的图的完整刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信