Borsuk and Vázsonyi problems through Reuleaux polyhedra

IF 1 3区 数学 Q1 MATHEMATICS
Gyivan Lopez-Campos , Déborah Oliveros , Jorge L. Ramírez Alfonsín
{"title":"Borsuk and Vázsonyi problems through Reuleaux polyhedra","authors":"Gyivan Lopez-Campos ,&nbsp;Déborah Oliveros ,&nbsp;Jorge L. Ramírez Alfonsín","doi":"10.1016/j.ejc.2025.104215","DOIUrl":null,"url":null,"abstract":"<div><div>The Borsuk conjecture and the Vázsonyi problem are two attractive and famous questions in discrete and combinatorial geometry, both based on the notion of diameter of bounded sets. In this paper, we present an equivalence between the critical sets with Borsuk number 4 in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and the minimal structures for the Vázsonyi problem by using the well-known Reuleaux polyhedra. The latter leads to a full characterization of all finite sets in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with Borsuk number 4.</div><div>The proof of such equivalence needs various ingredients, in particular, we proved a conjecture dealing with <em>strongly critical configuration</em> for the Vázsonyi problem and showed that the diameter graph arising from involutive polyhedra is vertex (and edge) 4-critical.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104215"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001040","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Borsuk conjecture and the Vázsonyi problem are two attractive and famous questions in discrete and combinatorial geometry, both based on the notion of diameter of bounded sets. In this paper, we present an equivalence between the critical sets with Borsuk number 4 in R3 and the minimal structures for the Vázsonyi problem by using the well-known Reuleaux polyhedra. The latter leads to a full characterization of all finite sets in R3 with Borsuk number 4.
The proof of such equivalence needs various ingredients, in particular, we proved a conjecture dealing with strongly critical configuration for the Vázsonyi problem and showed that the diameter graph arising from involutive polyhedra is vertex (and edge) 4-critical.
Borsuk和Vázsonyi问题通过勒洛多面体
Borsuk猜想和Vázsonyi问题是离散几何和组合几何中两个引人注目的著名问题,它们都基于有界集直径的概念。本文利用著名的勒洛多面体,给出了Vázsonyi问题在R3中Borsuk数为4的临界集与最小结构的等价性。后者导致了R3中具有Borsuk数4的所有有限集的完整表征。这种等价性的证明需要多种成分,特别是我们证明了Vázsonyi问题的一个处理强临界构形的猜想,并证明了对合多面体产生的直径图是顶点(和边)4临界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信