{"title":"Targeting alveolar macrophages in tuberculosis: Exploiting trained immunity for novel therapeutic approaches","authors":"Huilin Fang , Yan Xiong , Beibei Fu , Haibo Wu","doi":"10.1016/j.intimp.2025.115211","DOIUrl":null,"url":null,"abstract":"<div><div>Tuberculosis (TB) is an airborne infectious disease caused by the <em>Mycobacterium tuberculosis</em> (Mtb) complex organism. Alveolar macrophages (AMs) play key roles in immune defense, antigen presentation, immune regulation, and immune secretion during Mtb infection. Notably, AMs exhibit context-dependent dual functions: protective and pathogenic. This duality is driven by the heterogeneous composition of AM subsets and their distinct immune profiles. On one hand, they fight against Mtb through a series of mechanisms to protect the host; on the other hand, certain AM subsets may provide a permissive niche that facilitates Mtb survival and persistence. Mtb possesses unique cell surface lipids and secreted protein effectors that enable it to evade the killing effects of innate immune cells and preferentially establish an ecological niche within AMs. AMs not only strengthen their antibacterial capabilities through mechanisms such as training immune memory, metabolic reprogramming, cytokine production, and autophagy, but also collaborate with other immune cells to jointly maintain immune balance within the body. Once this balance is disrupted, tuberculosis infection may run rampant. Furthermore, this article summarizes the potential role of different methods for inducing trained immune AMs in the treatment of tuberculosis, including existing bacille Calmette-Guérin (BCG) vaccination and emerging strategies such as lipopolysaccharide (LPS)-mediated Toll-like receptor 4 (TLR4) activation and Influenza A virus (IAV)-induced host trained immunity activation, providing new ideas for the treatment of tuberculosis.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"163 ","pages":"Article 115211"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925012019","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis (TB) is an airborne infectious disease caused by the Mycobacterium tuberculosis (Mtb) complex organism. Alveolar macrophages (AMs) play key roles in immune defense, antigen presentation, immune regulation, and immune secretion during Mtb infection. Notably, AMs exhibit context-dependent dual functions: protective and pathogenic. This duality is driven by the heterogeneous composition of AM subsets and their distinct immune profiles. On one hand, they fight against Mtb through a series of mechanisms to protect the host; on the other hand, certain AM subsets may provide a permissive niche that facilitates Mtb survival and persistence. Mtb possesses unique cell surface lipids and secreted protein effectors that enable it to evade the killing effects of innate immune cells and preferentially establish an ecological niche within AMs. AMs not only strengthen their antibacterial capabilities through mechanisms such as training immune memory, metabolic reprogramming, cytokine production, and autophagy, but also collaborate with other immune cells to jointly maintain immune balance within the body. Once this balance is disrupted, tuberculosis infection may run rampant. Furthermore, this article summarizes the potential role of different methods for inducing trained immune AMs in the treatment of tuberculosis, including existing bacille Calmette-Guérin (BCG) vaccination and emerging strategies such as lipopolysaccharide (LPS)-mediated Toll-like receptor 4 (TLR4) activation and Influenza A virus (IAV)-induced host trained immunity activation, providing new ideas for the treatment of tuberculosis.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.