{"title":"LiMnO2 cathodes: Taming Jahn-Teller distortions via local symmetry engineering and multi-scale structural design","authors":"Boya Wang, Valentina A. Bocharova, Lin Gu","doi":"10.1016/j.ssi.2025.116954","DOIUrl":null,"url":null,"abstract":"<div><div>As a high-efficiency energy storage device, lithium-ion batteries greatly benefit from performance optimization of cathode materials to enhance their overall capabilities. LiMnO<sub>2</sub>, with its advantages such as high theoretical capacity, abundant manganese resources, environmental friendliness, and low cost, has emerged as a potential candidate to replace traditional LiCoO<sub>2</sub> and ternary cathode materials. However, its practical application still faces significant challenges, including thermodynamic instability leading to structural phase transitions, pronounced Jahn-Teller distortions, and manganese dissolution issues. This review focuses on these critical challenges, systematically discussing the development history and modification strategies of LiMnO<sub>2</sub>. Approaches such as local symmetry engineering, interface engineering, doping modification, composite structure design, and high-pressure synthesis show great potential in improving the comprehensive performance of LiMnO<sub>2</sub>. By integrating the latest research findings, we propose tailored strategies to design highly stable LiMnO<sub>2</sub>. Future studies should further explore multi-scale structural modulation and dynamic phase transition mechanisms to facilitate the practical application of LiMnO<sub>2</sub> in high-energy-density lithium-ion batteries.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116954"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825001730","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a high-efficiency energy storage device, lithium-ion batteries greatly benefit from performance optimization of cathode materials to enhance their overall capabilities. LiMnO2, with its advantages such as high theoretical capacity, abundant manganese resources, environmental friendliness, and low cost, has emerged as a potential candidate to replace traditional LiCoO2 and ternary cathode materials. However, its practical application still faces significant challenges, including thermodynamic instability leading to structural phase transitions, pronounced Jahn-Teller distortions, and manganese dissolution issues. This review focuses on these critical challenges, systematically discussing the development history and modification strategies of LiMnO2. Approaches such as local symmetry engineering, interface engineering, doping modification, composite structure design, and high-pressure synthesis show great potential in improving the comprehensive performance of LiMnO2. By integrating the latest research findings, we propose tailored strategies to design highly stable LiMnO2. Future studies should further explore multi-scale structural modulation and dynamic phase transition mechanisms to facilitate the practical application of LiMnO2 in high-energy-density lithium-ion batteries.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.