Rui Tan , Bei Wu , Huaiyuan Qian , Yusong Xie , Bojun Cao , Dawei Liu , Xu Li , Fangping Xie
{"title":"Enhancing granular mixing performance in static mixer with wedge-block blending elements","authors":"Rui Tan , Bei Wu , Huaiyuan Qian , Yusong Xie , Bojun Cao , Dawei Liu , Xu Li , Fangping Xie","doi":"10.1016/j.apt.2025.105005","DOIUrl":null,"url":null,"abstract":"<div><div>The static mixer captures immense attention as an efficient, energy-saving and low-cost device for mixing grain particles, which plays a critical role in improving food nutrition, tastes and cooking styles. This study pursues better performance of static mixer, and adopted the discrete element method to establish a particle-blanking mixing model for mung beans and brown rice. A self-designed wedge-block continuous collision static mixer was compared with the Kenics and the Low Pressure Drop (LPD) static mixers, and a bench test was carried out to evaluate the particle mixing of the three mixers. The results manifest that, in terms of mixing efficiency, the average flow rates of Kenics, LPD and wedge-block static mixers were 0.33 kg/s, 0.22 kg/s and 0.43 kg/s in the simulation, compared to 0.35 kg/s, 0.27 kg/s and 0.51 kg/s in the bench test, respectively. As for mixing uniformity, the relative standard deviation (RSD) values for Kenics, LPD and wedge-block static mixers were 24.95 %, 21.87 % and 7.44 % in the simulation, and 30.34 %, 35.93 % and 9.64 % in the bench test, respectively. In summary, the proposed wedge-block static mixer, able to boost the mixing rate and quality, is an ideal choice for the continuous production of pellet mixing, thanks to its superior mixing performance than Kenics and LPD in mixing mung bean and brown rice. These findings lay an essential basis for optimizing granular static mixer in the future.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 9","pages":"Article 105005"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125002262","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The static mixer captures immense attention as an efficient, energy-saving and low-cost device for mixing grain particles, which plays a critical role in improving food nutrition, tastes and cooking styles. This study pursues better performance of static mixer, and adopted the discrete element method to establish a particle-blanking mixing model for mung beans and brown rice. A self-designed wedge-block continuous collision static mixer was compared with the Kenics and the Low Pressure Drop (LPD) static mixers, and a bench test was carried out to evaluate the particle mixing of the three mixers. The results manifest that, in terms of mixing efficiency, the average flow rates of Kenics, LPD and wedge-block static mixers were 0.33 kg/s, 0.22 kg/s and 0.43 kg/s in the simulation, compared to 0.35 kg/s, 0.27 kg/s and 0.51 kg/s in the bench test, respectively. As for mixing uniformity, the relative standard deviation (RSD) values for Kenics, LPD and wedge-block static mixers were 24.95 %, 21.87 % and 7.44 % in the simulation, and 30.34 %, 35.93 % and 9.64 % in the bench test, respectively. In summary, the proposed wedge-block static mixer, able to boost the mixing rate and quality, is an ideal choice for the continuous production of pellet mixing, thanks to its superior mixing performance than Kenics and LPD in mixing mung bean and brown rice. These findings lay an essential basis for optimizing granular static mixer in the future.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)