From stress to growth: Mechanical tissue interactions in developing organs

IF 7.5 2区 生物学 Q1 PLANT SCIENCES
Benjamin P. Lapointe , Neha Sharma Kaur , Anne-Lise Routier-Kierzkowska , Agata Burian
{"title":"From stress to growth: Mechanical tissue interactions in developing organs","authors":"Benjamin P. Lapointe ,&nbsp;Neha Sharma Kaur ,&nbsp;Anne-Lise Routier-Kierzkowska ,&nbsp;Agata Burian","doi":"10.1016/j.pbi.2025.102759","DOIUrl":null,"url":null,"abstract":"<div><div>Plant cells usually grow in a coordinated manner due to rigid cell wall connections. However, individual tissue layers may differ in their growth capacity or elastic properties, creating tissue-level mechanical stresses. While mechanical forces are recognized as a key factor controlling growth and organ posture, the origin and exact patterns of tissue stresses in different organs remain unclear. This review synthesizes current knowledge of tissue mechanics in stems, roots, and leaves, emphasizing stress pattern changes during development, their potential causes, and the tissue-specific regulation of organ growth.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"86 ","pages":"Article 102759"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526625000731","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant cells usually grow in a coordinated manner due to rigid cell wall connections. However, individual tissue layers may differ in their growth capacity or elastic properties, creating tissue-level mechanical stresses. While mechanical forces are recognized as a key factor controlling growth and organ posture, the origin and exact patterns of tissue stresses in different organs remain unclear. This review synthesizes current knowledge of tissue mechanics in stems, roots, and leaves, emphasizing stress pattern changes during development, their potential causes, and the tissue-specific regulation of organ growth.
从压力到生长:器官发育中的机械组织相互作用
由于细胞壁的刚性连接,植物细胞通常以协调的方式生长。然而,单个组织层的生长能力或弹性特性可能不同,从而产生组织水平的机械应力。虽然机械力被认为是控制生长和器官姿势的关键因素,但不同器官组织应力的来源和确切模式尚不清楚。本文综述了目前茎、根和叶的组织力学,重点介绍了发育过程中应力模式的变化,其潜在原因以及器官生长的组织特异性调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信