Yue Zhao , Hannah Morgan-Smith Myers , Kevin Roberts , Shefford P. Baker
{"title":"The effect of nitrogen on the thermomechanical behavior of β-W thin films","authors":"Yue Zhao , Hannah Morgan-Smith Myers , Kevin Roberts , Shefford P. Baker","doi":"10.1016/j.surfcoat.2025.132458","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of nitrogen on the stress-temperature behavior of <em>β</em>‑tungsten thin films on silicon substrates was investigated. <em>β</em>-W thin films containing 2.2 to 6.8 at.% N were deposited using DC magnetron sputtering. Film stress was characterized <em>in-situ</em> during temperature cycles in vacuum using substrate curvature measurements. Two large irreversible tensile stress changes were seen in all films. Analysis of stress generation mechanisms revealed their origins. One, of nearly constant magnitude ~2.6 GPa, occurred at temperatures that increased with N content from 223 to 564 °C and was attributed to the density change of the <em>β</em>-<em>α</em> phase transformation indicating that higher nitrogen content enhances the thermal stability of <em>β</em>-W. The other occurred over a constant temperature range of 750–900 °C, increased in magnitude from 351 to 863 MPa with N content, and was attributed to nitrogen outgassing through grain boundary diffusion. Although grain growth was significant, contributions to stress were relatively minor. Knowledge of stress generation mechanisms facilitated construction of <em>β</em>-<em>α</em> phase transformation curves from the stress-temperature data. Analysis of these curves using a non-isothermal Johnson-Mehl-Avrami-Kolmagorov model indicates that the activation energy barrier for the phase transformation increases with the <em>α</em> phase volume fraction as well as with the initial nitrogen concentration, consistent with solute drag due to N at <em>α</em>/<em>β</em> phase boundaries. These thermomechanically-derived results are remarkably similar to prior results obtained using x-ray diffraction methods. These methods are compared, and implications for devices based on <em>β</em>-W are discussed.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"513 ","pages":"Article 132458"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225007327","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of nitrogen on the stress-temperature behavior of β‑tungsten thin films on silicon substrates was investigated. β-W thin films containing 2.2 to 6.8 at.% N were deposited using DC magnetron sputtering. Film stress was characterized in-situ during temperature cycles in vacuum using substrate curvature measurements. Two large irreversible tensile stress changes were seen in all films. Analysis of stress generation mechanisms revealed their origins. One, of nearly constant magnitude ~2.6 GPa, occurred at temperatures that increased with N content from 223 to 564 °C and was attributed to the density change of the β-α phase transformation indicating that higher nitrogen content enhances the thermal stability of β-W. The other occurred over a constant temperature range of 750–900 °C, increased in magnitude from 351 to 863 MPa with N content, and was attributed to nitrogen outgassing through grain boundary diffusion. Although grain growth was significant, contributions to stress were relatively minor. Knowledge of stress generation mechanisms facilitated construction of β-α phase transformation curves from the stress-temperature data. Analysis of these curves using a non-isothermal Johnson-Mehl-Avrami-Kolmagorov model indicates that the activation energy barrier for the phase transformation increases with the α phase volume fraction as well as with the initial nitrogen concentration, consistent with solute drag due to N at α/β phase boundaries. These thermomechanically-derived results are remarkably similar to prior results obtained using x-ray diffraction methods. These methods are compared, and implications for devices based on β-W are discussed.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.