{"title":"An Improved Virtual Orbital Driven Similarity Renormalization Group Approach for Core-Ionized and Core-Excited States.","authors":"Meng Huang,Francesco A Evangelista","doi":"10.1021/acs.jctc.5c00457","DOIUrl":null,"url":null,"abstract":"This work combines the multireference driven similarity renormalization group (DSRG) with a reference state obtained using improved virtual orbitals (IVOs) and generalized active space configuration interaction (GASCI) to model core-ionized and core-excited states without costly orbital optimizations. We test the accuracy of the resulting IVO-GASCI-DSRG method combined with three truncation levels across four data sets of molecules containing first-row elements (small molecules, potential energy surfaces, small-to-medium molecules, and X-ray absorption spectra). It is found that the IVO-GASCI-DSRG approach with an active space consisting of three GAS spaces and third-order perturbative corrections (IVO-GASCI[3]-DSRG-MRPT3) strikes the best balance between cost and accuracy. This method exhibits good agreement with the most accurate DSRG truncation scheme based on self-consistent orbitals on small-molecule benchmarks, and it is capable of accurately predicting the potential energy surfaces of core-excited and core-ionized states of CO, N2, and HF. To demonstrate the applicability of this method to medium-sized molecules, we simulate the X-ray absorption spectra of thymine and adenine using IVO-GASCI-DSRG-MRPT3, successfully reproducing key experimental spectral features.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"29 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00457","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work combines the multireference driven similarity renormalization group (DSRG) with a reference state obtained using improved virtual orbitals (IVOs) and generalized active space configuration interaction (GASCI) to model core-ionized and core-excited states without costly orbital optimizations. We test the accuracy of the resulting IVO-GASCI-DSRG method combined with three truncation levels across four data sets of molecules containing first-row elements (small molecules, potential energy surfaces, small-to-medium molecules, and X-ray absorption spectra). It is found that the IVO-GASCI-DSRG approach with an active space consisting of three GAS spaces and third-order perturbative corrections (IVO-GASCI[3]-DSRG-MRPT3) strikes the best balance between cost and accuracy. This method exhibits good agreement with the most accurate DSRG truncation scheme based on self-consistent orbitals on small-molecule benchmarks, and it is capable of accurately predicting the potential energy surfaces of core-excited and core-ionized states of CO, N2, and HF. To demonstrate the applicability of this method to medium-sized molecules, we simulate the X-ray absorption spectra of thymine and adenine using IVO-GASCI-DSRG-MRPT3, successfully reproducing key experimental spectral features.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.