{"title":"Boosting CAR T-Cell Efficacy by Blocking Proteasomal Degradation of Membrane Antigens.","authors":"Leonie Rieger,Kilian Irlinger,Franziska Füchsl,Marlene Tietje,Anna Purcarea,Nicolas Mathis Barbian,Melanie Faber,Carolin Vogelsang,Lisa Pfeuffer,Sonja Stotz,Oleksandra Karpiuk,Tobias Schulze,Abirami Augsburger,Nadine Glaisner,Verena Konetzki,Sabrina Friedel,Andrej Besse,Lenka Besse,Christoph Driessen,Maike Buchner,Kristina Schwamborn,Katja Steiger,Piero Giansanti,Sebastian Theurich,Johannes M Waldschmidt,Klaus Martin Kortüm,Michael Hudecek,Hermann Einsele,Marion Högner,Bernhard Kuster,Angela Krackhardt,Judith S Hecker,Florian Bassermann","doi":"10.1182/blood.2024027616","DOIUrl":null,"url":null,"abstract":"Chimeric antigen receptor (CAR) T cells exhibit high response rates in B cell malignancies, but most patients eventually relapse. A key mechanism of treatment failure is the loss or downregulation of tumor antigen expression, yet strategies to modulate cell surface levels of CAR T cell targets remain largely unexplored. Here we identify B cell maturation antigen (BCMA), a central CAR T cell target in multiple myeloma (MM), as a highly short-lived protein that undergoes K48-linked polyubiquitylation at the plasma membrane, leading to its p97-dependent degradation via the ubiquitin-proteasome system (UPS). This previously unprecedented mechanism of plasma membrane protein regulation enables significant enhancement of BCMA expression via proteasome inhibitors (PI). The clinically approved PI carfilzomib (CFZ) significantly enhances the efficacy of BCMA-directed CAR T cells against both PI-sensitive and refractory MM cells in vitro and in vivo. Notably, treatment of ten patients with CFZ under the compassionate use CarCAR protocol - after relapse following BCMA CAR T cell therapy - resulted in increased BCMA expression in all patients. However, clinical responses were observed only in those with residual and/or expanding CAR T cells, suggesting restored CAR T cell function. These findings provide a rationale for the use of CFZ treatment in relapsed or refractory MM following BCMA CAR T therapy, advocate for future trials combining CFZ with BCMA CAR T cells and provide a framework for exploring UPS-dependent degradation of other immunotherapy antigens.","PeriodicalId":9102,"journal":{"name":"Blood","volume":"109 1","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024027616","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR) T cells exhibit high response rates in B cell malignancies, but most patients eventually relapse. A key mechanism of treatment failure is the loss or downregulation of tumor antigen expression, yet strategies to modulate cell surface levels of CAR T cell targets remain largely unexplored. Here we identify B cell maturation antigen (BCMA), a central CAR T cell target in multiple myeloma (MM), as a highly short-lived protein that undergoes K48-linked polyubiquitylation at the plasma membrane, leading to its p97-dependent degradation via the ubiquitin-proteasome system (UPS). This previously unprecedented mechanism of plasma membrane protein regulation enables significant enhancement of BCMA expression via proteasome inhibitors (PI). The clinically approved PI carfilzomib (CFZ) significantly enhances the efficacy of BCMA-directed CAR T cells against both PI-sensitive and refractory MM cells in vitro and in vivo. Notably, treatment of ten patients with CFZ under the compassionate use CarCAR protocol - after relapse following BCMA CAR T cell therapy - resulted in increased BCMA expression in all patients. However, clinical responses were observed only in those with residual and/or expanding CAR T cells, suggesting restored CAR T cell function. These findings provide a rationale for the use of CFZ treatment in relapsed or refractory MM following BCMA CAR T therapy, advocate for future trials combining CFZ with BCMA CAR T cells and provide a framework for exploring UPS-dependent degradation of other immunotherapy antigens.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.