Pierre Ernotte,Amandine Maes,Sarah Garifo,Isalyne Drewek,Yves-Michel Frapart,Robert N Muller,Dimitri Stanicki,Sophie Laurent
{"title":"Nitroxide-Modified Silica Nanoparticles: Impact of Radical Density on Relaxometric and EPR Properties.","authors":"Pierre Ernotte,Amandine Maes,Sarah Garifo,Isalyne Drewek,Yves-Michel Frapart,Robert N Muller,Dimitri Stanicki,Sophie Laurent","doi":"10.1021/acs.langmuir.5c01616","DOIUrl":null,"url":null,"abstract":"In this study, we report the synthesis and characterization of nitroxide-functionalized silica nanoparticles incorporating a TEMPO-based spin label. These nanoparticles were prepared through a reverse microemulsion method, and the nitroxide moiety was introduced via a TEMPO-modified silane, synthesized by coupling 4-amino-TEMPO with 3-(triethoxysilyl)propylsuccinic anhydride. By adjusting experimental parameters, we successfully modulated the radical surface density, obtaining values ranging from 0.36 to 2.83 radicals/nm2, as determined by UV spectroscopy. Relaxometric measurements showed that both longitudinal (r1) and transverse (r2) relaxivities were strongly influenced by radical density, reaching maximum values of 5.42 and 11.94 s-1·mM-1, respectively, corresponding to enhancements of up to 489% (r1) and 712% (r2) compared to free 4-amino-TEMPO (at 20 MHz). Interestingly, high surface loading led to a decrease in relaxivity, highlighting the role of spin-spin interactions in modulating the relaxation process. Phantom electron paramagnetic resonance imaging (EPRI) demonstrated improved contrast and resolution for formulations with low radical densities, highlighting the importance of surface engineering to optimize the nanoparticle performance for EPRI applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"13 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c01616","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we report the synthesis and characterization of nitroxide-functionalized silica nanoparticles incorporating a TEMPO-based spin label. These nanoparticles were prepared through a reverse microemulsion method, and the nitroxide moiety was introduced via a TEMPO-modified silane, synthesized by coupling 4-amino-TEMPO with 3-(triethoxysilyl)propylsuccinic anhydride. By adjusting experimental parameters, we successfully modulated the radical surface density, obtaining values ranging from 0.36 to 2.83 radicals/nm2, as determined by UV spectroscopy. Relaxometric measurements showed that both longitudinal (r1) and transverse (r2) relaxivities were strongly influenced by radical density, reaching maximum values of 5.42 and 11.94 s-1·mM-1, respectively, corresponding to enhancements of up to 489% (r1) and 712% (r2) compared to free 4-amino-TEMPO (at 20 MHz). Interestingly, high surface loading led to a decrease in relaxivity, highlighting the role of spin-spin interactions in modulating the relaxation process. Phantom electron paramagnetic resonance imaging (EPRI) demonstrated improved contrast and resolution for formulations with low radical densities, highlighting the importance of surface engineering to optimize the nanoparticle performance for EPRI applications.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).