Tailored Heterogeneous Interphase Layer Promotes Low-Temperature Desolvation Toward Durable Sodium Metal Batteries

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Congcong Liu, Kaitong Yao, Yang Yang, Hai Yang, Shitan Xu, Yi Tang, Yu Yao, Zhijun Wu, Shengnan He, Hongge Pan, Xianhong Rui, Yan Yu
{"title":"Tailored Heterogeneous Interphase Layer Promotes Low-Temperature Desolvation Toward Durable Sodium Metal Batteries","authors":"Congcong Liu,&nbsp;Kaitong Yao,&nbsp;Yang Yang,&nbsp;Hai Yang,&nbsp;Shitan Xu,&nbsp;Yi Tang,&nbsp;Yu Yao,&nbsp;Zhijun Wu,&nbsp;Shengnan He,&nbsp;Hongge Pan,&nbsp;Xianhong Rui,&nbsp;Yan Yu","doi":"10.1002/adma.202507735","DOIUrl":null,"url":null,"abstract":"<p>Sodium metal batteries (SMBs) represent a promising next-generation energy storage technology due to their low cost and high energy density. However, SMBs face significant challenges, including interfacial instability and the growth of sodium dendrites on the metal anode, particularly at low temperatures (LTs). Poor ion desolvation at LTs further exacerbates these issues, severely compromising battery performance. To address these problems, a heterogeneous artificial solid electrolyte interphase (SEI) composed of Na<sub>3</sub>VO<sub>4</sub> and metallic In (NVO-In@Na) is designed for LT SMBs. The sodiophilic Na<sub>3</sub>VO<sub>4</sub> promotes sodium ion adsorption, while the Na<sub>2</sub>In phase formed during the initial plating enhances ion transport kinetics, resulting in uniform Na deposition behavior. Theory calculations indicate that the Na<sub>3</sub>VO<sub>4</sub>/Na<sub>2</sub>In interface accelerates charge transfer processes and desolvation. The engineered NVO-In@Na anode demonstrates exceptional stability: symmetric cells operate for over 2000 h at 0.5 mA cm<sup>−2</sup>/1 mAh cm<sup>−2</sup> under ambient conditions and exceed 1100 h at 0.1 mA cm<sup>−2</sup>/0.1 mAh cm<sup>−2</sup> at −40 °C. Full cells paired with Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) cathode retain 97% capacity after 1150 cycles at 0.5 C and −40 °C. This work highlights the potential of rational SEI design to overcome critical limitations of SMBs, advancing high-performance energy storage under extreme conditions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 39","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202507735","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium metal batteries (SMBs) represent a promising next-generation energy storage technology due to their low cost and high energy density. However, SMBs face significant challenges, including interfacial instability and the growth of sodium dendrites on the metal anode, particularly at low temperatures (LTs). Poor ion desolvation at LTs further exacerbates these issues, severely compromising battery performance. To address these problems, a heterogeneous artificial solid electrolyte interphase (SEI) composed of Na3VO4 and metallic In (NVO-In@Na) is designed for LT SMBs. The sodiophilic Na3VO4 promotes sodium ion adsorption, while the Na2In phase formed during the initial plating enhances ion transport kinetics, resulting in uniform Na deposition behavior. Theory calculations indicate that the Na3VO4/Na2In interface accelerates charge transfer processes and desolvation. The engineered NVO-In@Na anode demonstrates exceptional stability: symmetric cells operate for over 2000 h at 0.5 mA cm−2/1 mAh cm−2 under ambient conditions and exceed 1100 h at 0.1 mA cm−2/0.1 mAh cm−2 at −40 °C. Full cells paired with Na3V2(PO4)3 (NVP) cathode retain 97% capacity after 1150 cycles at 0.5 C and −40 °C. This work highlights the potential of rational SEI design to overcome critical limitations of SMBs, advancing high-performance energy storage under extreme conditions.

Abstract Image

定制的非均质间相层促进低温脱溶,以实现耐用的钠金属电池
钠金属电池(SMBs)由于其低成本和高能量密度,代表了一种有前途的下一代储能技术。然而,smb面临着巨大的挑战,包括界面不稳定性和金属阳极上钠枝晶的生长,特别是在低温(lt)下。LTs的离子溶解不良进一步加剧了这些问题,严重影响了电池的性能。为了解决这些问题,设计了一种由Na3VO4和金属In (NVO‐In@Na)组成的非均相人工固体电解质界面(SEI)。亲钠性Na3VO4促进了钠离子的吸附,而初始镀时形成的Na2In相增强了离子传输动力学,导致了均匀的钠沉积行为。理论计算表明,Na3VO4/Na2In界面加速了电荷转移和脱溶过程。设计的NVO‐In@Na阳极表现出优异的稳定性:对称电池在环境条件下在0.5 mA cm - 2/1 mAh cm - 2下工作超过2000小时,在- 40°C下在0.1 mA cm - 2/0.1 mAh cm - 2下工作超过1100小时。与Na3V2(PO4)3 (NVP)阴极配对的完整电池在0.5 C和- 40°C下循环1150次后保持97%的容量。这项工作强调了合理SEI设计的潜力,以克服smb的关键限制,在极端条件下推进高性能储能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信