Mg‐MOF‐74@PAN Nanofibrous Membranes: Synergistic Purification of Trace Formaldehyde and Particulate Matter

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-11 DOI:10.1002/smll.202506011
Xingbei Wu, Shi Tu, Xinyu Zhang, Xiaofei Chen, Jiajin Huang, Jinze Yao, Ying Wu, Bin Mu, Zhong Li, Qibin Xia
{"title":"Mg‐MOF‐74@PAN Nanofibrous Membranes: Synergistic Purification of Trace Formaldehyde and Particulate Matter","authors":"Xingbei Wu, Shi Tu, Xinyu Zhang, Xiaofei Chen, Jiajin Huang, Jinze Yao, Ying Wu, Bin Mu, Zhong Li, Qibin Xia","doi":"10.1002/smll.202506011","DOIUrl":null,"url":null,"abstract":"The rapid removal of trace formaldehyde and particulate matter (PM) from indoor environments via adsorption and filtration remains a significant challenge. Herein, a series of MOFs@PAN composite membranes with dense adsorption sites and enhanced electrostatic interactions are engineered for efficient formaldehyde capture and PM filtration. The 72%‐Mg‐MOF‐74@PAN membrane demonstrated a remarkable HCHO adsorption capacity of 36.39 mg g<jats:sup>−1</jats:sup> (1 ppm, 303 K) and a breakthrough adsorption capacity of 106.11 mg g<jats:sup>−1</jats:sup> (10 ppm, 298 K), surpassing that of commercial activated carbon (1.23 mg g<jats:sup>−1</jats:sup>) and ZIF‐67@ANF (MOFs, 5.31 mg g<jats:sup>−1</jats:sup>). The superior trace HCHO adsorption originates from strong electrostatic interactions between unsaturated Mg clusters and HCHO, coupled with densely distributed adsorption sites within the framework. Furthermore, the 72%‐Mg‐MOF‐74@PAN membrane exhibited a particle filtration efficiency of over 99.5% for PM<jats:sub>0.3</jats:sub>. The PM<jats:sub>0.3</jats:sub> capture mechanism synergistically integrated passive structural diffusional deposition mediated by the ultrafine PAN fibers (0.25 µm) and proactive electrostatic entrapment driven by surface hydroxyl groups and unsaturated metal sites. This research underscores the exceptional performance of Mg‐MOF‐74@PAN membranes in improving indoor air quality, efficiently eliminating formaldehyde and proficiently filtering PM<jats:sub>0.3</jats:sub> particles.","PeriodicalId":228,"journal":{"name":"Small","volume":"11 3 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202506011","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid removal of trace formaldehyde and particulate matter (PM) from indoor environments via adsorption and filtration remains a significant challenge. Herein, a series of MOFs@PAN composite membranes with dense adsorption sites and enhanced electrostatic interactions are engineered for efficient formaldehyde capture and PM filtration. The 72%‐Mg‐MOF‐74@PAN membrane demonstrated a remarkable HCHO adsorption capacity of 36.39 mg g−1 (1 ppm, 303 K) and a breakthrough adsorption capacity of 106.11 mg g−1 (10 ppm, 298 K), surpassing that of commercial activated carbon (1.23 mg g−1) and ZIF‐67@ANF (MOFs, 5.31 mg g−1). The superior trace HCHO adsorption originates from strong electrostatic interactions between unsaturated Mg clusters and HCHO, coupled with densely distributed adsorption sites within the framework. Furthermore, the 72%‐Mg‐MOF‐74@PAN membrane exhibited a particle filtration efficiency of over 99.5% for PM0.3. The PM0.3 capture mechanism synergistically integrated passive structural diffusional deposition mediated by the ultrafine PAN fibers (0.25 µm) and proactive electrostatic entrapment driven by surface hydroxyl groups and unsaturated metal sites. This research underscores the exceptional performance of Mg‐MOF‐74@PAN membranes in improving indoor air quality, efficiently eliminating formaldehyde and proficiently filtering PM0.3 particles.
Mg‐MOF‐74@PAN纳米纤维膜:微量甲醛和颗粒物的协同净化
通过吸附和过滤快速去除室内环境中的微量甲醛和颗粒物(PM)仍然是一个重大挑战。本文设计了一系列具有密集吸附位点和增强静电相互作用的MOFs@PAN复合膜,用于有效捕获甲醛和PM过滤。72%‐Mg‐MOF‐74@PAN膜对HCHO的吸附量为36.39 Mg g−1 (1 ppm, 303 K),突破吸附量为106.11 Mg g−1 (10 ppm, 298 K),超过了商用活性炭(1.23 Mg g−1)和ZIF‐67@ANF (MOF, 5.31 Mg g−1)。优异的微量HCHO吸附源于不饱和Mg簇与HCHO之间的强静电相互作用,以及框架内密集分布的吸附位点。此外,72%‐Mg‐MOF‐74@PAN膜对PM0.3的颗粒过滤效率超过99.5%。PM0.3捕获机制协同集成了由超细PAN纤维(0.25µm)介导的被动结构扩散沉积和由表面羟基和不饱和金属位点驱动的主动静电捕获。这项研究强调了Mg - MOF - 74@PAN膜在改善室内空气质量,有效去除甲醛和过滤PM0.3颗粒方面的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信