S. Menemenlis, G. A. Vecchi, Wenchang Yang, S. Fueglistaler, S. P. Raghuraman
{"title":"Consequential differences in satellite-era sea surface temperature trends across datasets","authors":"S. Menemenlis, G. A. Vecchi, Wenchang Yang, S. Fueglistaler, S. P. Raghuraman","doi":"10.1038/s41558-025-02362-6","DOIUrl":null,"url":null,"abstract":"<p>Global surface temperatures since the 1980s, when near-global satellite-based sea surface temperature (SST) measurements became available, are presumed to be well known. Satellite-era warming trends in four commonly used global (land and ocean) temperature reconstructions agree closely, yet whether SST datasets also agree is unclear. Here we show that trends in four widely used SST datasets show first-order differences, with 1982–2024 60° S to 60° N trends ranging from 0.108 to 0.184 °C per decade. These large discrepancies are perplexing given the agreement between global temperature datasets and the fact that 70% of the surface of the Earth is covered by ocean, but are legible upon recognizing that global temperature datasets use two SST fields whose trends agree more closely than those of the four SST datasets. Considering the trend uncertainty across SST datasets widens the range of plausible global temperature trends and impacts interpretations of recent record global temperatures, with implications for observational and model-based climate studies.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"4 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02362-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Global surface temperatures since the 1980s, when near-global satellite-based sea surface temperature (SST) measurements became available, are presumed to be well known. Satellite-era warming trends in four commonly used global (land and ocean) temperature reconstructions agree closely, yet whether SST datasets also agree is unclear. Here we show that trends in four widely used SST datasets show first-order differences, with 1982–2024 60° S to 60° N trends ranging from 0.108 to 0.184 °C per decade. These large discrepancies are perplexing given the agreement between global temperature datasets and the fact that 70% of the surface of the Earth is covered by ocean, but are legible upon recognizing that global temperature datasets use two SST fields whose trends agree more closely than those of the four SST datasets. Considering the trend uncertainty across SST datasets widens the range of plausible global temperature trends and impacts interpretations of recent record global temperatures, with implications for observational and model-based climate studies.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.