Mechanistic understanding of iron oxide nanobiotransformation in Zea mays: a combined synchrotron-based, physiological and molecular approach

IF 5.1 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Luca Pagano, Silvia Carlo, Giovanni Orazio Lepore, Valentina Bonanni, Milan Zizic, Simone Pollastri, Simone Margheri, Jacopo Orsilli, Alessandro Puri, Marco Villani, Chunyang Li, Giuliana Aquilanti, Alessandra Gianoncelli, Francesco d'Acapito, Andrea Zappettini, Chuanxin Ma, Jason C. White, Nelson Marmiroli, Marta Marmiroli
{"title":"Mechanistic understanding of iron oxide nanobiotransformation in Zea mays: a combined synchrotron-based, physiological and molecular approach","authors":"Luca Pagano, Silvia Carlo, Giovanni Orazio Lepore, Valentina Bonanni, Milan Zizic, Simone Pollastri, Simone Margheri, Jacopo Orsilli, Alessandro Puri, Marco Villani, Chunyang Li, Giuliana Aquilanti, Alessandra Gianoncelli, Francesco d'Acapito, Andrea Zappettini, Chuanxin Ma, Jason C. White, Nelson Marmiroli, Marta Marmiroli","doi":"10.1039/d5en00401b","DOIUrl":null,"url":null,"abstract":"The study investigates the nanobiotransformation dynamics and molecular level impact of iron oxide nanoparticles (nFe<small><sub>3</sub></small>O<small><sub>4</sub></small>) on <em>Zea mays</em>. Specifically, the impact of soil-applied nFe<small><sub>3</sub></small>O<small><sub>4</sub></small> (500 mg kg<small><sup>−1</sup></small>) or FeCl<small><sub>3</sub></small> (75 mg kg<small><sup>−1</sup></small>) on <em>Z. mays</em> morphological, physiological, and transcriptional responses was investigated in a whole life cycle study. X-ray absorption spectroscopy (XAS) showed that the Fe local structure changed upon nanoscale Fe internalization, indicating potential nanoparticle biotransformation within the plant tissues. Neither of the Fe amendments induced significant plant morphological changes, although FeCl<small><sub>3</sub></small> reduced chlorophyll content (SPAD index 37.43 <em>vs.</em> 44.33) and stomatal transpiration (s cm<small><sup>−1</sup></small>, 5.08 <em>vs.</em> 9.67) and increased lipid peroxidation (MDA content, μM, 7.01 <em>vs.</em> 3.26) compared with controls. Conversely, nFe<small><sub>3</sub></small>O<small><sub>4</sub></small>-treated plants exhibited milder physiological response as compared to FeCl<small><sub>3</sub></small>-treated plants (SPAD index: 40.42 <em>vs.</em> 37.43; MDA content: 4.57 <em>vs.</em> 7.01 μM). Gene expression of selected biomarkers showed a 2- to 4-fold increase of glutathione reductase (<em>gsr1</em>) and <em>mate1</em> xylem transporter, and a 2-fold decrease of proline responding (<em>pro1</em>) gene. These findings, together with iron intake quantification, suggest limited internalization and translocation of iron in the pristine nanometric form and that Fe<small><sup>3+</sup></small> internalization was a function of the amount in the medium. Importantly, nFe<small><sub>3</sub></small>O<small><sub>4</sub></small> provided a controlled and more precise method of iron release <em>in planta</em>. The combination of physical, chemical, and biological data to assess the potential of nFe<small><sub>3</sub></small>O<small><sub>4</sub></small> as a nanofertilizer leads to novel insights on the potential impact of nano-enabled agriculture and nanobiofortification.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"7 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d5en00401b","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigates the nanobiotransformation dynamics and molecular level impact of iron oxide nanoparticles (nFe3O4) on Zea mays. Specifically, the impact of soil-applied nFe3O4 (500 mg kg−1) or FeCl3 (75 mg kg−1) on Z. mays morphological, physiological, and transcriptional responses was investigated in a whole life cycle study. X-ray absorption spectroscopy (XAS) showed that the Fe local structure changed upon nanoscale Fe internalization, indicating potential nanoparticle biotransformation within the plant tissues. Neither of the Fe amendments induced significant plant morphological changes, although FeCl3 reduced chlorophyll content (SPAD index 37.43 vs. 44.33) and stomatal transpiration (s cm−1, 5.08 vs. 9.67) and increased lipid peroxidation (MDA content, μM, 7.01 vs. 3.26) compared with controls. Conversely, nFe3O4-treated plants exhibited milder physiological response as compared to FeCl3-treated plants (SPAD index: 40.42 vs. 37.43; MDA content: 4.57 vs. 7.01 μM). Gene expression of selected biomarkers showed a 2- to 4-fold increase of glutathione reductase (gsr1) and mate1 xylem transporter, and a 2-fold decrease of proline responding (pro1) gene. These findings, together with iron intake quantification, suggest limited internalization and translocation of iron in the pristine nanometric form and that Fe3+ internalization was a function of the amount in the medium. Importantly, nFe3O4 provided a controlled and more precise method of iron release in planta. The combination of physical, chemical, and biological data to assess the potential of nFe3O4 as a nanofertilizer leads to novel insights on the potential impact of nano-enabled agriculture and nanobiofortification.

Abstract Image

玉米中氧化铁纳米生物转化的机理:基于同步加速器、生理和分子的结合方法
研究了氧化铁纳米颗粒(nFe3O4)对玉米的纳米生物转化动力学和分子水平的影响。具体而言,在全生命周期研究中,研究了土壤中施用的nFe3O4 (500 mg kg - 1)或FeCl3 (75 mg kg - 1)对Z. mays形态、生理和转录反应的影响。x射线吸收光谱(XAS)显示,铁在纳米尺度内化后局部结构发生了变化,表明纳米颗粒在植物组织内可能发生生物转化。与对照相比,FeCl3降低了叶绿素含量(SPAD指数37.43比44.33)和气孔蒸腾(s cm−1,5.08比9.67),增加了脂质过氧化(MDA含量,μM, 7.01比3.26),但这两种铁处理都没有引起显著的植物形态变化。相反,与fecl3处理相比,nfe3o4处理的植株表现出更温和的生理反应(SPAD指数:40.42 vs. 37.43;MDA含量:4.57 vs. 7.01 μM)。所选生物标志物的基因表达量显示谷胱甘肽还原酶(gsr1)和mate1木质部转运蛋白增加2 ~ 4倍,脯氨酸应答基因(pro1)减少2倍。这些发现,连同铁摄入量的量化,表明铁在原始纳米形态下的内化和转运有限,并且Fe3+内化是介质中含量的函数。重要的是,nFe3O4提供了一种控制和更精确的植物铁释放方法。结合物理、化学和生物数据来评估nFe3O4作为纳米肥料的潜力,可以对纳米农业和纳米生物强化的潜在影响产生新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信