Application of Deep Learning to the Classification of Stokes Profiles: From the Quiet Sun to Sunspots

Ryan J. Campbell, M. Mathioudakis, Carlos Quintero Noda, P. H. Keys and D. Orozco Suárez
{"title":"Application of Deep Learning to the Classification of Stokes Profiles: From the Quiet Sun to Sunspots","authors":"Ryan J. Campbell, M. Mathioudakis, Carlos Quintero Noda, P. H. Keys and D. Orozco Suárez","doi":"10.3847/1538-4357/addb49","DOIUrl":null,"url":null,"abstract":"The morphology of circular polarization profiles from solar spectropolarimetric observations encodes information about the magnetic field strength, inclination, and line-of-sight velocity gradients. Previous studies used manual methods or unsupervised machine learning (ML) to classify the shapes of circular polarization profiles. We trained a multilayer perceptron comparing classifications with unsupervised ML. The method was tested on quiet Sun data sets from Daniel K. Inouye Solar Telescope (DKIST), Hinode, and GREGOR, as well as simulations of granulation and a sunspot. We achieve validation metrics typically close to or above 90%. We also present the first statistical analysis of quiet Sun DKIST/ViSP data using inversions and our supervised classifier. We demonstrate that classifications with unsupervised ML alone can introduce systemic errors that could compromise statistical comparisons. DKIST and Hinode classifications in the quiet Sun are similar, despite our modeling indicating spatial resolution differences should alter the shapes of circular polarization signals. Asymmetrical (symmetrical) profiles are less (more) common in GREGOR than DKIST or Hinode data, consistent with narrower response functions in the 1564.85 nm line. Single-lobed profiles are extremely rare in GREGOR data. In the sunspot simulation, the 630.25 nm line produces “double” profiles in the penumbra, likely a manifestation of magneto-optical effects in horizontal fields; these are rarer in the 1564.85 nm line. We find the 1564.85 nm line detects more reverse polarity magnetic fields in the penumbra, in contradiction to observations. We detect mixed-polarity profiles in nearly one fifth of the penumbra. Supervised ML robustly classifies solar spectropolarimetric data, enabling detailed statistical analyses of magnetic fields.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/addb49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The morphology of circular polarization profiles from solar spectropolarimetric observations encodes information about the magnetic field strength, inclination, and line-of-sight velocity gradients. Previous studies used manual methods or unsupervised machine learning (ML) to classify the shapes of circular polarization profiles. We trained a multilayer perceptron comparing classifications with unsupervised ML. The method was tested on quiet Sun data sets from Daniel K. Inouye Solar Telescope (DKIST), Hinode, and GREGOR, as well as simulations of granulation and a sunspot. We achieve validation metrics typically close to or above 90%. We also present the first statistical analysis of quiet Sun DKIST/ViSP data using inversions and our supervised classifier. We demonstrate that classifications with unsupervised ML alone can introduce systemic errors that could compromise statistical comparisons. DKIST and Hinode classifications in the quiet Sun are similar, despite our modeling indicating spatial resolution differences should alter the shapes of circular polarization signals. Asymmetrical (symmetrical) profiles are less (more) common in GREGOR than DKIST or Hinode data, consistent with narrower response functions in the 1564.85 nm line. Single-lobed profiles are extremely rare in GREGOR data. In the sunspot simulation, the 630.25 nm line produces “double” profiles in the penumbra, likely a manifestation of magneto-optical effects in horizontal fields; these are rarer in the 1564.85 nm line. We find the 1564.85 nm line detects more reverse polarity magnetic fields in the penumbra, in contradiction to observations. We detect mixed-polarity profiles in nearly one fifth of the penumbra. Supervised ML robustly classifies solar spectropolarimetric data, enabling detailed statistical analyses of magnetic fields.
深度学习在Stokes剖面分类中的应用:从安静的太阳到太阳黑子
来自太阳偏振光谱观测的圆偏振剖面的形态编码了有关磁场强度、倾角和视线速度梯度的信息。以前的研究使用人工方法或无监督机器学习(ML)来分类圆偏振轮廓的形状。我们训练了一个多层感知器,将分类与无监督机器学习进行比较。该方法在Daniel K. Inouye太阳望远镜(DKIST)、Hinode和GREGOR的安静太阳数据集上进行了测试,并模拟了粒状和太阳黑子。我们实现的验证指标通常接近或高于90%。我们还首次使用反转和我们的监督分类器对安静的Sun DKIST/ViSP数据进行统计分析。我们证明,单独使用无监督ML进行分类可能会引入系统错误,从而影响统计比较。DKIST和Hinode在安静太阳中的分类是相似的,尽管我们的模型表明空间分辨率的差异应该改变圆偏振信号的形状。与DKIST或Hinode数据相比,GREGOR中不对称(对称)剖面较少(更)常见,这与1564.85 nm线上较窄的响应函数一致。单叶剖面在GREGOR数据中极为罕见。在太阳黑子模拟中,630.25 nm线在半影中产生“双”轮廓,可能是水平场磁光效应的表现;这些在1564.85 nm线中比较少见。我们发现1564.85 nm线在半影中检测到更多的反极性磁场,这与观测结果相矛盾。我们在近五分之一的半影中检测到混合极性剖面。有监督的机器学习稳健地分类太阳光谱偏振数据,使磁场的详细统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信