Enhancing ferroelectric stability: wide-range of adaptive control in epitaxial HfO2/ZrO2 superlattices

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jingxuan Li, Shiqing Deng, Liyang Ma, Yangyang Si, Chao Zhou, Kefan Wang, Sizhe Huang, Jiyuan Yang, Yunlong Tang, Yu-Chieh Ku, Chang-Yang Kuo, Yijie Li, Sujit Das, Shi Liu, Zuhuang Chen
{"title":"Enhancing ferroelectric stability: wide-range of adaptive control in epitaxial HfO2/ZrO2 superlattices","authors":"Jingxuan Li, Shiqing Deng, Liyang Ma, Yangyang Si, Chao Zhou, Kefan Wang, Sizhe Huang, Jiyuan Yang, Yunlong Tang, Yu-Chieh Ku, Chang-Yang Kuo, Yijie Li, Sujit Das, Shi Liu, Zuhuang Chen","doi":"10.1038/s41467-025-61758-2","DOIUrl":null,"url":null,"abstract":"<p>The metastability of the polar phase in HfO<sub>2</sub>, despite its excellent compatibility with the complementary metal-oxide-semiconductor process, remains a key obstacle for its industrial applications. Traditional stabilization approaches, such as doping, often induce crystal defects and impose constraints on the thickness of ferroelectric HfO<sub>2</sub> thin films. These limitations render the ferroelectric properties vulnerable to degradation, particularly due to phase transitions under operational conditions. Here, we demonstrate robust ferroelectricity in high-quality epitaxial (HfO<sub>2</sub>)<sub><i>n</i></sub>/(ZrO<sub>2</sub>)<sub><i>n</i></sub> superlattices, which exhibit significantly enhanced ferroelectric stability across an extended thickness range. Optimized-period superlattices maintain stable ferroelectricity from up to 100 nm, excellent fatigue resistance exceeding 10<sup>9</sup> switching cycles, and a low coercive field of ~0.85 MV/cm. First-principles calculations reveal that the kinetic energy barrier of phase transition and interfacial formation energy are crucial factors in suppressing the formation of non-polar phases. This work establishes a versatile platform for exploring high-performance fluorite-structured superlattices and advances the integration of HfO<sub>2</sub>-based ferroelectrics into a broader range of applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"341 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61758-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The metastability of the polar phase in HfO2, despite its excellent compatibility with the complementary metal-oxide-semiconductor process, remains a key obstacle for its industrial applications. Traditional stabilization approaches, such as doping, often induce crystal defects and impose constraints on the thickness of ferroelectric HfO2 thin films. These limitations render the ferroelectric properties vulnerable to degradation, particularly due to phase transitions under operational conditions. Here, we demonstrate robust ferroelectricity in high-quality epitaxial (HfO2)n/(ZrO2)n superlattices, which exhibit significantly enhanced ferroelectric stability across an extended thickness range. Optimized-period superlattices maintain stable ferroelectricity from up to 100 nm, excellent fatigue resistance exceeding 109 switching cycles, and a low coercive field of ~0.85 MV/cm. First-principles calculations reveal that the kinetic energy barrier of phase transition and interfacial formation energy are crucial factors in suppressing the formation of non-polar phases. This work establishes a versatile platform for exploring high-performance fluorite-structured superlattices and advances the integration of HfO2-based ferroelectrics into a broader range of applications.

Abstract Image

增强铁电稳定性:外延HfO2/ZrO2超晶格的大范围自适应控制
HfO2中极性相的亚稳态,尽管与互补金属氧化物半导体工艺具有良好的兼容性,但仍然是其工业应用的关键障碍。传统的稳定方法,如掺杂,往往会导致晶体缺陷,并对铁电HfO2薄膜的厚度施加限制。这些限制使得铁电性能容易退化,特别是由于在操作条件下的相变。在这里,我们在高质量的外延(HfO2)n/(ZrO2)n超晶格中展示了强大的铁电性,其在扩展的厚度范围内表现出显著增强的铁电稳定性。优化后的周期超晶格在高达100 nm的范围内保持稳定的铁电性,超过109个开关周期的优异耐疲劳性,以及~0.85 MV/cm的低矫顽力场。第一性原理计算表明,相变的动能势垒和界面形成能是抑制非极性相形成的关键因素。这项工作为探索高性能萤石结构的超晶格建立了一个多功能平台,并将基于hfo2的铁电体集成到更广泛的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信