Effective Viscosity in the Intracluster Medium During Magnetic Field Amplification via Turbulent Dynamo

S. Adduci Faria, R. Santos-Lima and E. M. de Gouveia Dal Pino
{"title":"Effective Viscosity in the Intracluster Medium During Magnetic Field Amplification via Turbulent Dynamo","authors":"S. Adduci Faria, R. Santos-Lima and E. M. de Gouveia Dal Pino","doi":"10.3847/1538-4357/addc5f","DOIUrl":null,"url":null,"abstract":"Galaxy clusters, the largest gravitationally bound structures, host a hot, diffuse plasma with poorly understood viscosity and magnetic field amplification. Astrophysical plasmas are often modeled with magnetohydrodynamics (MHD), but low collision rates in environments such as the intracluster medium (ICM) hinder thermodynamic equilibrium, causing pressure anisotropies and high viscosity. High-β plasmas, dominated by thermal pressure, are prone to instabilities (e.g., firehose or mirror) that limit anisotropy, reduce viscosity, and enable small-scale dynamo-driven magnetic amplification. This study examines viscosity evolution in the ICM during turbulent magnetic field amplification. We performed 3D MHD simulations of forced turbulence with an initially weak, uniform magnetic field. Using the Chew–Goldberger–Low (CGL)-MHD framework, we incorporate anisotropic pressure dynamics and instability-driven anisotropy limitation. We analyze effective viscosity and dynamo evolution, comparing results with Braginskii-MHD and uniform-viscosity MHD. Our results show that viscosity decreases over time, allowing magnetic field amplification to saturation levels similar to nonviscous MHD. Viscosity distribution becomes bimodal, reflecting (i) collisional values and (ii) turbulence-dominated values proportional to 1 × 10−4LturbUturb in unstable regions. At saturation, 60% of plasma retains collisional viscosity. Braginskii-MHD reproduces similar magnetic amplification and viscosity structures. However, uniform-viscosity MHD, where viscosity equals the mean saturated CGL-MHD value, fails to capture the turbulence inertial range. These findings highlight the need for anisotropic viscosity models in studying ICM processes such as magnetic topology, cosmic ray transport, and active galactic nucleus-driven shocks. Moreover, our CGL-MHD and Braginskii-MHD models match the Coma cluster density fluctuation spectrum, reinforcing its weakly collisional nature.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"697 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/addc5f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Galaxy clusters, the largest gravitationally bound structures, host a hot, diffuse plasma with poorly understood viscosity and magnetic field amplification. Astrophysical plasmas are often modeled with magnetohydrodynamics (MHD), but low collision rates in environments such as the intracluster medium (ICM) hinder thermodynamic equilibrium, causing pressure anisotropies and high viscosity. High-β plasmas, dominated by thermal pressure, are prone to instabilities (e.g., firehose or mirror) that limit anisotropy, reduce viscosity, and enable small-scale dynamo-driven magnetic amplification. This study examines viscosity evolution in the ICM during turbulent magnetic field amplification. We performed 3D MHD simulations of forced turbulence with an initially weak, uniform magnetic field. Using the Chew–Goldberger–Low (CGL)-MHD framework, we incorporate anisotropic pressure dynamics and instability-driven anisotropy limitation. We analyze effective viscosity and dynamo evolution, comparing results with Braginskii-MHD and uniform-viscosity MHD. Our results show that viscosity decreases over time, allowing magnetic field amplification to saturation levels similar to nonviscous MHD. Viscosity distribution becomes bimodal, reflecting (i) collisional values and (ii) turbulence-dominated values proportional to 1 × 10−4LturbUturb in unstable regions. At saturation, 60% of plasma retains collisional viscosity. Braginskii-MHD reproduces similar magnetic amplification and viscosity structures. However, uniform-viscosity MHD, where viscosity equals the mean saturated CGL-MHD value, fails to capture the turbulence inertial range. These findings highlight the need for anisotropic viscosity models in studying ICM processes such as magnetic topology, cosmic ray transport, and active galactic nucleus-driven shocks. Moreover, our CGL-MHD and Braginskii-MHD models match the Coma cluster density fluctuation spectrum, reinforcing its weakly collisional nature.
湍流发电机磁场放大过程中簇内介质的有效粘度
星系团是最大的引力束缚结构,拥有一个热的弥漫等离子体,其粘度和磁场放大鲜为人知。天体物理等离子体通常用磁流体动力学(MHD)建模,但在群集内介质(ICM)等环境中,低碰撞率阻碍了热力学平衡,导致压力各向异性和高粘度。受热压控制的高β等离子体容易出现不稳定性(例如,消防软管或镜子),从而限制了各向异性,降低了粘度,并使小规模的电机驱动磁放大成为可能。本研究考察了湍流磁场放大过程中ICM的粘度演变。我们在初始微弱的均匀磁场下进行了三维MHD模拟。利用Chew-Goldberger-Low (CGL)-MHD框架,我们结合了各向异性压力动力学和不稳定驱动的各向异性限制。我们分析了有效粘度和发电机演化,并将结果与Braginskii-MHD和均匀粘度MHD进行了比较。我们的研究结果表明,粘度随着时间的推移而降低,允许磁场放大到类似于非粘性MHD的饱和水平。粘度分布变为双峰分布,在不稳定区域反映(i)碰撞值和(ii)湍流主导值与1 × 10−4LturbUturb成正比。在饱和状态下,60%的等离子体保持碰撞粘度。Braginskii-MHD复制了类似的磁放大和粘度结构。然而,粘度等于饱和CGL-MHD平均值的均匀粘度MHD无法捕捉湍流惯性范围。这些发现强调了各向异性黏度模型在研究磁拓扑、宇宙射线输运和活动星系核驱动激波等ICM过程中的必要性。此外,我们的CGL-MHD和Braginskii-MHD模型与后发星团密度波动谱相匹配,加强了后发星团弱碰撞的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信