Antra Ganguly, Ujjaini Basu, Varun Gunda, Ashwin Krishnan, Pranav Ramesh, Kush Jivnani, Arjun Raghuram, Shashank Bhagavatula, Sifa Khan, Philippe Zimmern, Nicole De Nisco, Shalini Prasad
{"title":"USENSE: A proof‐of‐concept self‐screening tool for home‐based recurrent urinary tract infection management","authors":"Antra Ganguly, Ujjaini Basu, Varun Gunda, Ashwin Krishnan, Pranav Ramesh, Kush Jivnani, Arjun Raghuram, Shashank Bhagavatula, Sifa Khan, Philippe Zimmern, Nicole De Nisco, Shalini Prasad","doi":"10.1002/btm2.70038","DOIUrl":null,"url":null,"abstract":"In this work, we report a novel proof‐of‐concept biosensing diagnostic tool for the multiplexed electrochemical quantitation of a unique combination of three <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content>‐relevant biomarkers, Prostaglandin <jats:styled-content style=\"fixed-case\">E2</jats:styled-content> (<jats:styled-content style=\"fixed-case\">PGE2</jats:styled-content>), Interleukin‐8 (<jats:styled-content style=\"fixed-case\">IL</jats:styled-content>‐8), and Lipopolysaccharide (<jats:styled-content style=\"fixed-case\">LPS</jats:styled-content>), in unfiltered human urine. The proposed device, called <jats:styled-content style=\"fixed-case\">USENSE</jats:styled-content>, integrates lateral flow microfluidic channels, a gold‐based sensor array for quantifying <jats:styled-content style=\"fixed-case\">PGE2</jats:styled-content>, <jats:styled-content style=\"fixed-case\">IL</jats:styled-content>‐8, and <jats:styled-content style=\"fixed-case\">LPS</jats:styled-content> levels, and a random forest machine learning model for reliable diagnosis of <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content>. The device is unique as it not only acts as a diagnostic device but also provides information on <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> by providing a risk score for <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> recurrence. <jats:styled-content style=\"fixed-case\">USENSE</jats:styled-content> is culture‐free and label‐free, requires no sample preparation at the user end, and can be adapted for use in home‐based self‐screening. In less than 5 minutes, <jats:styled-content style=\"fixed-case\">USENSE</jats:styled-content> directly measures the urinary concentration of <jats:styled-content style=\"fixed-case\">PGE2</jats:styled-content>, <jats:styled-content style=\"fixed-case\">IL</jats:styled-content>‐8, and <jats:styled-content style=\"fixed-case\">LPS</jats:styled-content> and provides a <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> severity state classification: 0 = Healthy, 1 = Asymptomatic Bacteriuria, 2 = Symptomatic; low risk of relapse, 3 = Symptomatic; high risk of <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> relapse. In postmenopausal women, the <jats:styled-content style=\"fixed-case\">PGE2</jats:styled-content>, <jats:styled-content style=\"fixed-case\">IL8</jats:styled-content>, and <jats:styled-content style=\"fixed-case\">LPS</jats:styled-content> concentrations measured via the device correlated well with the levels measured using traditional enzyme‐linked immunosorbent assay (<jats:styled-content style=\"fixed-case\">ELISA</jats:styled-content>). Our machine learning diagnostic model allowed for <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> diagnosis with 93% test accuracy and <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> prognosis state classification with >84% accuracy for the human urine samples tested. Further development of <jats:styled-content style=\"fixed-case\">USENSE</jats:styled-content> for clinical and home‐based use could create a paradigm shift in point‐of‐care <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> diagnostics by allowing timely intervention and minimizing unwarranted empirical administration of antibiotics.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"694 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we report a novel proof‐of‐concept biosensing diagnostic tool for the multiplexed electrochemical quantitation of a unique combination of three UTI‐relevant biomarkers, Prostaglandin E2 (PGE2), Interleukin‐8 (IL‐8), and Lipopolysaccharide (LPS), in unfiltered human urine. The proposed device, called USENSE, integrates lateral flow microfluidic channels, a gold‐based sensor array for quantifying PGE2, IL‐8, and LPS levels, and a random forest machine learning model for reliable diagnosis of UTI. The device is unique as it not only acts as a diagnostic device but also provides information on UTI by providing a risk score for UTI recurrence. USENSE is culture‐free and label‐free, requires no sample preparation at the user end, and can be adapted for use in home‐based self‐screening. In less than 5 minutes, USENSE directly measures the urinary concentration of PGE2, IL‐8, and LPS and provides a UTI severity state classification: 0 = Healthy, 1 = Asymptomatic Bacteriuria, 2 = Symptomatic; low risk of relapse, 3 = Symptomatic; high risk of UTI relapse. In postmenopausal women, the PGE2, IL8, and LPS concentrations measured via the device correlated well with the levels measured using traditional enzyme‐linked immunosorbent assay (ELISA). Our machine learning diagnostic model allowed for UTI diagnosis with 93% test accuracy and UTI prognosis state classification with >84% accuracy for the human urine samples tested. Further development of USENSE for clinical and home‐based use could create a paradigm shift in point‐of‐care UTI diagnostics by allowing timely intervention and minimizing unwarranted empirical administration of antibiotics.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.