USENSE: A proof‐of‐concept self‐screening tool for home‐based recurrent urinary tract infection management

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Antra Ganguly, Ujjaini Basu, Varun Gunda, Ashwin Krishnan, Pranav Ramesh, Kush Jivnani, Arjun Raghuram, Shashank Bhagavatula, Sifa Khan, Philippe Zimmern, Nicole De Nisco, Shalini Prasad
{"title":"USENSE: A proof‐of‐concept self‐screening tool for home‐based recurrent urinary tract infection management","authors":"Antra Ganguly, Ujjaini Basu, Varun Gunda, Ashwin Krishnan, Pranav Ramesh, Kush Jivnani, Arjun Raghuram, Shashank Bhagavatula, Sifa Khan, Philippe Zimmern, Nicole De Nisco, Shalini Prasad","doi":"10.1002/btm2.70038","DOIUrl":null,"url":null,"abstract":"In this work, we report a novel proof‐of‐concept biosensing diagnostic tool for the multiplexed electrochemical quantitation of a unique combination of three <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content>‐relevant biomarkers, Prostaglandin <jats:styled-content style=\"fixed-case\">E2</jats:styled-content> (<jats:styled-content style=\"fixed-case\">PGE2</jats:styled-content>), Interleukin‐8 (<jats:styled-content style=\"fixed-case\">IL</jats:styled-content>‐8), and Lipopolysaccharide (<jats:styled-content style=\"fixed-case\">LPS</jats:styled-content>), in unfiltered human urine. The proposed device, called <jats:styled-content style=\"fixed-case\">USENSE</jats:styled-content>, integrates lateral flow microfluidic channels, a gold‐based sensor array for quantifying <jats:styled-content style=\"fixed-case\">PGE2</jats:styled-content>, <jats:styled-content style=\"fixed-case\">IL</jats:styled-content>‐8, and <jats:styled-content style=\"fixed-case\">LPS</jats:styled-content> levels, and a random forest machine learning model for reliable diagnosis of <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content>. The device is unique as it not only acts as a diagnostic device but also provides information on <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> by providing a risk score for <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> recurrence. <jats:styled-content style=\"fixed-case\">USENSE</jats:styled-content> is culture‐free and label‐free, requires no sample preparation at the user end, and can be adapted for use in home‐based self‐screening. In less than 5 minutes, <jats:styled-content style=\"fixed-case\">USENSE</jats:styled-content> directly measures the urinary concentration of <jats:styled-content style=\"fixed-case\">PGE2</jats:styled-content>, <jats:styled-content style=\"fixed-case\">IL</jats:styled-content>‐8, and <jats:styled-content style=\"fixed-case\">LPS</jats:styled-content> and provides a <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> severity state classification: 0 = Healthy, 1 = Asymptomatic Bacteriuria, 2 = Symptomatic; low risk of relapse, 3 = Symptomatic; high risk of <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> relapse. In postmenopausal women, the <jats:styled-content style=\"fixed-case\">PGE2</jats:styled-content>, <jats:styled-content style=\"fixed-case\">IL8</jats:styled-content>, and <jats:styled-content style=\"fixed-case\">LPS</jats:styled-content> concentrations measured via the device correlated well with the levels measured using traditional enzyme‐linked immunosorbent assay (<jats:styled-content style=\"fixed-case\">ELISA</jats:styled-content>). Our machine learning diagnostic model allowed for <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> diagnosis with 93% test accuracy and <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> prognosis state classification with &gt;84% accuracy for the human urine samples tested. Further development of <jats:styled-content style=\"fixed-case\">USENSE</jats:styled-content> for clinical and home‐based use could create a paradigm shift in point‐of‐care <jats:styled-content style=\"fixed-case\">UTI</jats:styled-content> diagnostics by allowing timely intervention and minimizing unwarranted empirical administration of antibiotics.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"694 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we report a novel proof‐of‐concept biosensing diagnostic tool for the multiplexed electrochemical quantitation of a unique combination of three UTI‐relevant biomarkers, Prostaglandin E2 (PGE2), Interleukin‐8 (IL‐8), and Lipopolysaccharide (LPS), in unfiltered human urine. The proposed device, called USENSE, integrates lateral flow microfluidic channels, a gold‐based sensor array for quantifying PGE2, IL‐8, and LPS levels, and a random forest machine learning model for reliable diagnosis of UTI. The device is unique as it not only acts as a diagnostic device but also provides information on UTI by providing a risk score for UTI recurrence. USENSE is culture‐free and label‐free, requires no sample preparation at the user end, and can be adapted for use in home‐based self‐screening. In less than 5 minutes, USENSE directly measures the urinary concentration of PGE2, IL‐8, and LPS and provides a UTI severity state classification: 0 = Healthy, 1 = Asymptomatic Bacteriuria, 2 = Symptomatic; low risk of relapse, 3 = Symptomatic; high risk of UTI relapse. In postmenopausal women, the PGE2, IL8, and LPS concentrations measured via the device correlated well with the levels measured using traditional enzyme‐linked immunosorbent assay (ELISA). Our machine learning diagnostic model allowed for UTI diagnosis with 93% test accuracy and UTI prognosis state classification with >84% accuracy for the human urine samples tested. Further development of USENSE for clinical and home‐based use could create a paradigm shift in point‐of‐care UTI diagnostics by allowing timely intervention and minimizing unwarranted empirical administration of antibiotics.
USENSE:用于家庭复发性尿路感染管理的概念验证自我筛查工具
在这项工作中,我们报告了一种新的概念验证生物传感诊断工具,用于多路电化学定量检测未经过滤的人类尿液中三种UTI相关生物标志物,前列腺素E2 (PGE2),白细胞介素8 (IL - 8)和脂多糖(LPS)的独特组合。该设备被称为USENSE,集成了横向流动微流体通道,用于量化PGE2, IL - 8和LPS水平的基于金的传感器阵列,以及用于可靠诊断UTI的随机森林机器学习模型。该设备的独特之处在于它不仅作为诊断设备,而且通过提供尿路感染复发的风险评分来提供尿路感染的信息。USENSE无需培养,无需标签,无需在用户端准备样品,可用于家庭自我筛选。在不到5分钟的时间内,USENSE直接测量尿中PGE2、IL - 8和LPS的浓度,并提供尿路感染严重程度状态分类:0 =健康,1 =无症状细菌尿,2 =有症状;复发风险低,3 =有症状;尿路感染复发的高风险。在绝经后妇女中,通过该装置测量的PGE2、IL8和LPS浓度与使用传统酶联免疫吸附试验(ELISA)测量的水平具有良好的相关性。我们的机器学习诊断模型允许对人类尿液样本进行UTI诊断,测试准确率为93%,UTI预后状态分类准确率为84%。USENSE用于临床和家庭使用的进一步发展可以通过允许及时干预和尽量减少无根据的抗生素经验性管理,在护理点UTI诊断中创造范式转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信