The Dynamics of Sand Dunes

IF 25.4 1区 工程技术 Q1 MECHANICS
Nathalie M. Vriend, Karol A. Bacik
{"title":"The Dynamics of Sand Dunes","authors":"Nathalie M. Vriend, Karol A. Bacik","doi":"10.1146/annurev-fluid-112723-062843","DOIUrl":null,"url":null,"abstract":"Sand dunes cover 5% of Earth's land surface, and they abundantly populate river bottoms and seabeds. The subtle dynamical interplay between the granular matter and the overlaying fluid leads to rich phenomenology at different scales, from colliding grains through migrating sand dunes to slowly evolving dune fields. In this review, we survey recent developments in the literature on the dynamics of sand dunes and focus in particular on the physics and mathematics. Our discussion is organized around four central paradigms of the field: flat bed instability, single dune migration, dune–dune interactions, and dune field statistics. Besides discussing the key scientific advances, we also highlight the methodological advances in observations, experiments, and simulations that facilitated them. We conclude our review by discussing the social implications of dune dynamics, such as the interaction between dune and infrastructure, and we offer speculation on what research topics related to sand dunes might become important in the next decade.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"93 1","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-112723-062843","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sand dunes cover 5% of Earth's land surface, and they abundantly populate river bottoms and seabeds. The subtle dynamical interplay between the granular matter and the overlaying fluid leads to rich phenomenology at different scales, from colliding grains through migrating sand dunes to slowly evolving dune fields. In this review, we survey recent developments in the literature on the dynamics of sand dunes and focus in particular on the physics and mathematics. Our discussion is organized around four central paradigms of the field: flat bed instability, single dune migration, dune–dune interactions, and dune field statistics. Besides discussing the key scientific advances, we also highlight the methodological advances in observations, experiments, and simulations that facilitated them. We conclude our review by discussing the social implications of dune dynamics, such as the interaction between dune and infrastructure, and we offer speculation on what research topics related to sand dunes might become important in the next decade.
沙丘动力学
沙丘覆盖了地球陆地表面的5%,它们大量分布在河底和海床上。颗粒物质与上覆流体之间微妙的动力学相互作用导致了不同尺度上丰富的现象,从颗粒通过迁移沙丘碰撞到缓慢演变的沙丘场。本文综述了沙丘动力学研究的最新进展,重点介绍了沙丘动力学的物理和数学研究。我们的讨论围绕着该领域的四个中心范式:平床不稳定性、单沙丘迁移、沙丘-沙丘相互作用和沙丘场统计。除了讨论关键的科学进展外,我们还强调了促进这些进展的观察、实验和模拟方面的方法进步。最后,我们讨论了沙丘动力学的社会意义,如沙丘与基础设施之间的相互作用,并对未来十年与沙丘相关的研究课题进行了推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信