Md Shafayat Hossain, Zi-Jia Cheng, Yu-Xiao Jiang, Tyler A. Cochran, Song-Bo Zhang, Huangyu Wu, Xiaoxiong Liu, Xiquan Zheng, Guangming Cheng, Byunghoon Kim, Qi Zhang, Maksim Litskevich, Junyi Zhang, Jinjin Liu, Jia-Xin Yin, Xian P. Yang, Jonathan D. Denlinger, Massimo Tallarida, Ji Dai, Elio Vescovo, Anil Rajapitamahuni, Nan Yao, Anna Keselman, Yingying Peng, Yugui Yao, Zhiwei Wang, Luis Balicas, Titus Neupert, M. Zahid Hasan
{"title":"Topological excitonic insulator with tunable momentum order","authors":"Md Shafayat Hossain, Zi-Jia Cheng, Yu-Xiao Jiang, Tyler A. Cochran, Song-Bo Zhang, Huangyu Wu, Xiaoxiong Liu, Xiquan Zheng, Guangming Cheng, Byunghoon Kim, Qi Zhang, Maksim Litskevich, Junyi Zhang, Jinjin Liu, Jia-Xin Yin, Xian P. Yang, Jonathan D. Denlinger, Massimo Tallarida, Ji Dai, Elio Vescovo, Anil Rajapitamahuni, Nan Yao, Anna Keselman, Yingying Peng, Yugui Yao, Zhiwei Wang, Luis Balicas, Titus Neupert, M. Zahid Hasan","doi":"10.1038/s41567-025-02917-6","DOIUrl":null,"url":null,"abstract":"<p>Correlated topological materials often maintain a delicate balance among physical symmetries. Many topological orders are symmetry protected, whereas most correlated phenomena arise from spontaneous symmetry breaking. Cases where symmetry breaking induces a non-trivial topological phase are rare. Here we demonstrate the presence of two such phases in Ta<sub>2</sub>Pd<sub>3</sub>Te<sub>5</sub>, where Coulomb interactions form excitons that condense below 100 K, one with zero and the other with finite momentum. We observed a full spectral bulk gap, which stems from exciton condensation. This topological excitonic insulator state spontaneously breaks mirror symmetries but involves a weak structural coupling. Scanning tunnelling microscopy shows gapless boundary modes in the bulk insulating phase. Their magnetic field response, together with theoretical modelling, indicates a topological origin. These observations establish Ta<sub>2</sub>Pd<sub>3</sub>Te<sub>5</sub> as a topological excitonic insulator in a three-dimensional crystal. Thus, our results manifest a unique sequence of topological exciton condensations in a bulk crystal, offering exciting opportunities to study critical behaviour and excitations.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"11 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02917-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Correlated topological materials often maintain a delicate balance among physical symmetries. Many topological orders are symmetry protected, whereas most correlated phenomena arise from spontaneous symmetry breaking. Cases where symmetry breaking induces a non-trivial topological phase are rare. Here we demonstrate the presence of two such phases in Ta2Pd3Te5, where Coulomb interactions form excitons that condense below 100 K, one with zero and the other with finite momentum. We observed a full spectral bulk gap, which stems from exciton condensation. This topological excitonic insulator state spontaneously breaks mirror symmetries but involves a weak structural coupling. Scanning tunnelling microscopy shows gapless boundary modes in the bulk insulating phase. Their magnetic field response, together with theoretical modelling, indicates a topological origin. These observations establish Ta2Pd3Te5 as a topological excitonic insulator in a three-dimensional crystal. Thus, our results manifest a unique sequence of topological exciton condensations in a bulk crystal, offering exciting opportunities to study critical behaviour and excitations.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.