Felix Wong, Alicia Li, Satotaka Omori, Ryan S. Lach, Jose Nunez, Yunke Ren, Sean P. Brown, Vipul Singhal, Brent R. Lyda, Taivan Batjargal, Ethan Dickson, Jose Roberto Rodrigues Reyes, Juan Manual Uruena Vargas, Shalaka Wahane, Hahn Kim, James J. Collins, Maxwell Z. Wilson
{"title":"Optogenetics-enabled discovery of integrated stress response modulators","authors":"Felix Wong, Alicia Li, Satotaka Omori, Ryan S. Lach, Jose Nunez, Yunke Ren, Sean P. Brown, Vipul Singhal, Brent R. Lyda, Taivan Batjargal, Ethan Dickson, Jose Roberto Rodrigues Reyes, Juan Manual Uruena Vargas, Shalaka Wahane, Hahn Kim, James J. Collins, Maxwell Z. Wilson","doi":"10.1016/j.cell.2025.06.024","DOIUrl":null,"url":null,"abstract":"The integrated stress response (ISR) is a conserved stress response that maintains homeostasis in eukaryotic cells. Modulating the ISR holds therapeutic potential for diseases including viral infection, cancer, and neurodegeneration, but few known compounds can do so without toxicity. Here, we present an optogenetic platform for the discovery of compounds that selectively modulate the ISR. Optogenetic clustering of PKR induces ISR-mediated cell death, enabling the high-throughput screening of 370,830 compounds. We identify compounds that potentiate cell death without cytotoxicity across diverse cell types and stressors. Mechanistic studies reveal that these compounds upregulate activating transcription factor 4 (ATF4), sensitizing cells to stress and apoptosis, and identify GCN2 as a molecular target. Additionally, these compounds exhibit antiviral activity, and one compound reduced viral titers in a mouse model of herpesvirus infection. Structure-activity and toxicology studies highlight opportunities to optimize therapeutic efficacy. This work demonstrates an optogenetic approach to drug discovery and introduces ISR potentiators with therapeutic potential.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"697 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.024","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integrated stress response (ISR) is a conserved stress response that maintains homeostasis in eukaryotic cells. Modulating the ISR holds therapeutic potential for diseases including viral infection, cancer, and neurodegeneration, but few known compounds can do so without toxicity. Here, we present an optogenetic platform for the discovery of compounds that selectively modulate the ISR. Optogenetic clustering of PKR induces ISR-mediated cell death, enabling the high-throughput screening of 370,830 compounds. We identify compounds that potentiate cell death without cytotoxicity across diverse cell types and stressors. Mechanistic studies reveal that these compounds upregulate activating transcription factor 4 (ATF4), sensitizing cells to stress and apoptosis, and identify GCN2 as a molecular target. Additionally, these compounds exhibit antiviral activity, and one compound reduced viral titers in a mouse model of herpesvirus infection. Structure-activity and toxicology studies highlight opportunities to optimize therapeutic efficacy. This work demonstrates an optogenetic approach to drug discovery and introduces ISR potentiators with therapeutic potential.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.