The visibility of Eidolon distortions in things and stuff.

IF 2 4区 心理学 Q2 OPHTHALMOLOGY
Swantje Mahncke, Lina Eicke-Kanani, Ole Fabritz, Thomas S A Wallis
{"title":"The visibility of Eidolon distortions in things and stuff.","authors":"Swantje Mahncke, Lina Eicke-Kanani, Ole Fabritz, Thomas S A Wallis","doi":"10.1167/jov.25.8.12","DOIUrl":null,"url":null,"abstract":"<p><p>The visibility of alterations to the physical structure of images (distortions) depends on the image content and on viewing conditions. Here we measure human sensitivity to a class of image distortions, Eidolons, applied to image sets containing a range of content, from object images or scenes, to textures and materials. In an odd-one-out task with peripherally presented images, we replicate previous findings that distortions are harder to detect in images which contain large regions of texture or material and fewer segmentable object boundaries. Next, we reason that an image-computable model able to capture the critical aspects of encoding transformations should be able to predict the discriminability of distortion-image pairs, irrespective of image content. We therefore test a variety of image-computable models, treating them as perceptual metrics, using a simple hierarchical regression framework. Of the tested models, the texture statistics of the Portilla and Simoncelli model best predicted performance, beating simple Fourier-spectrum-based transforms and a biologically inspired LGN statistics model. There remains, however, a substantial gap between the best single image-computable metric and an oracle model that has information about the experimental parameters and image labels. This work compliments existing datasets in image distortion discriminability and image quality, and extends existing frameworks for comparatively evaluating the predictive performance of perceptual metrics.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"25 8","pages":"12"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.25.8.12","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The visibility of alterations to the physical structure of images (distortions) depends on the image content and on viewing conditions. Here we measure human sensitivity to a class of image distortions, Eidolons, applied to image sets containing a range of content, from object images or scenes, to textures and materials. In an odd-one-out task with peripherally presented images, we replicate previous findings that distortions are harder to detect in images which contain large regions of texture or material and fewer segmentable object boundaries. Next, we reason that an image-computable model able to capture the critical aspects of encoding transformations should be able to predict the discriminability of distortion-image pairs, irrespective of image content. We therefore test a variety of image-computable models, treating them as perceptual metrics, using a simple hierarchical regression framework. Of the tested models, the texture statistics of the Portilla and Simoncelli model best predicted performance, beating simple Fourier-spectrum-based transforms and a biologically inspired LGN statistics model. There remains, however, a substantial gap between the best single image-computable metric and an oracle model that has information about the experimental parameters and image labels. This work compliments existing datasets in image distortion discriminability and image quality, and extends existing frameworks for comparatively evaluating the predictive performance of perceptual metrics.

幻象的可见性扭曲了事物。
图像物理结构变化(扭曲)的可见性取决于图像内容和观看条件。在这里,我们测量人类对一类图像失真的敏感度,Eidolons,应用于包含一系列内容的图像集,从物体图像或场景到纹理和材料。在外围呈现图像的奇一出任务中,我们复制了先前的发现,即在包含大区域纹理或材料以及较少可分割对象边界的图像中更难检测失真。接下来,我们推断一个能够捕捉编码转换的关键方面的图像可计算模型应该能够预测失真图像对的可判别性,而不管图像内容如何。因此,我们测试了各种图像可计算模型,将它们视为感知度量,使用简单的分层回归框架。在测试的模型中,Portilla和Simoncelli模型的纹理统计预测性能最好,击败了简单的基于傅里叶谱的变换和受生物学启发的LGN统计模型。然而,在最佳的单图像可计算度量和具有有关实验参数和图像标签信息的oracle模型之间仍然存在很大的差距。这项工作补充了图像失真可判别性和图像质量方面的现有数据集,并扩展了用于比较评估感知度量的预测性能的现有框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vision
Journal of Vision 医学-眼科学
CiteScore
2.90
自引率
5.60%
发文量
218
审稿时长
3-6 weeks
期刊介绍: Exploring all aspects of biological visual function, including spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信