Automated denoising of CITE-seq data with ThresholdR.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Mohammad Oliaeimotlagh, Sunil Kumar, Aleksandr Taraskin, Sujit Silas Armstrong Suthahar, Vasantika Suryawanshi, Austin W T Chiang, Klaus Ley
{"title":"Automated denoising of CITE-seq data with ThresholdR.","authors":"Mohammad Oliaeimotlagh, Sunil Kumar, Aleksandr Taraskin, Sujit Silas Armstrong Suthahar, Vasantika Suryawanshi, Austin W T Chiang, Klaus Ley","doi":"10.1016/j.crmeth.2025.101088","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a potent addition to single-cell RNA sequencing (scRNA-seq). This method enriches transcriptomic insights by incorporating information about the cell surface phenotype through the application of oligonucleotide-tagged monoclonal antibodies. Similar to observations in flow cytometry, the CITE-seq signal (antibody-derived tag [ADT]) contains technical noise originating from ambient antibodies within the reaction compartment, non-specific binding, and/or imperfect titration. To denoise ADT data provided through CITE-seq experiments, we present ThresholdR, an R-based automated tool, to reliably and systematically find the threshold that separates the signal from the noise for each antibody. We assess the performance of ThresholdR across different datasets and platforms and benchmark it against two alternative methods, DSB (denoised and scaled by background) and CellBender. We show that ThresholdR remedies the high false negative rates of DSB and CellBender. We propose that denoising with ThresholdR can improve cell-type annotation and improve downstream analyses.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101088"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a potent addition to single-cell RNA sequencing (scRNA-seq). This method enriches transcriptomic insights by incorporating information about the cell surface phenotype through the application of oligonucleotide-tagged monoclonal antibodies. Similar to observations in flow cytometry, the CITE-seq signal (antibody-derived tag [ADT]) contains technical noise originating from ambient antibodies within the reaction compartment, non-specific binding, and/or imperfect titration. To denoise ADT data provided through CITE-seq experiments, we present ThresholdR, an R-based automated tool, to reliably and systematically find the threshold that separates the signal from the noise for each antibody. We assess the performance of ThresholdR across different datasets and platforms and benchmark it against two alternative methods, DSB (denoised and scaled by background) and CellBender. We show that ThresholdR remedies the high false negative rates of DSB and CellBender. We propose that denoising with ThresholdR can improve cell-type annotation and improve downstream analyses.

基于ThresholdR的CITE-seq数据自动去噪。
通过测序(CITE-seq)对转录组和表位进行细胞索引是单细胞RNA测序(scRNA-seq)的有力补充。该方法通过应用寡核苷酸标记的单克隆抗体,结合有关细胞表面表型的信息,丰富了转录组学见解。与流式细胞术中的观察结果类似,CITE-seq信号(抗体衍生标签[ADT])包含来自反应室内环境抗体、非特异性结合和/或滴定不完善的技术噪声。为了对通过CITE-seq实验提供的ADT数据进行降噪,我们提出了ThresholdR,这是一种基于r的自动化工具,可以可靠而系统地找到将每个抗体的信号与噪声分离的阈值。我们评估了ThresholdR在不同数据集和平台上的性能,并对两种替代方法DSB(根据背景去噪和缩放)和CellBender进行了基准测试。我们发现ThresholdR弥补了DSB和CellBender的高假阴性率。我们提出使用ThresholdR去噪可以改善细胞类型注释和改善下游分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信