Rashid Abbasi, Farhan Amin, Amerah Alabrah, Gyu Sang Choi, Salabat Khan, Md Belal Bin Heyat, Muhammad Shahid Iqbal, Huiling Chen
{"title":"Diabetic retinopathy detection using adaptive deep convolutional neural networks on fundus images.","authors":"Rashid Abbasi, Farhan Amin, Amerah Alabrah, Gyu Sang Choi, Salabat Khan, Md Belal Bin Heyat, Muhammad Shahid Iqbal, Huiling Chen","doi":"10.1038/s41598-025-09394-0","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is an age-related macular degeneration eye disease problem that causes pathological changes in the retinal neural and vascular system. Recently, fundus imaging is a popular technology and widely used for clinical diagnosis, diabetic retinopathy, etc. It is evident from the literature that image quality changes due to uneven illumination, pigmentation level effect, and camera sensitivity affect clinical performance, particularly in automated image analysis systems. In addition, low-quality retinal images make the subsequent precise segmentation a challenging task for the computer diagnosis of retinal images. Thus, in order to solve this issue, herein, we proposed an adaptive enhancement-based Deep Convolutional Neural Network (DCNN) model for diabetic retinopathy (DR). In our proposed model, we used an adaptive gamma enhancement matrix to optimize the color channels and contrast standardization used in images. The proposed model integrates quantile-based histogram equalization to expand the perceptibility of the fundus image. Our proposed model provides a remarkable improvement in fundus color images and can be used particularly for low-contrast quality images. We performed several experiments, and the efficiency is evaluated using a large public dataset named Messidor's. Our proposed model efficiently classifies a distinct group of retinal images. The average assessment score for the original and enhanced images is 0.1942 (standard deviation: 0.0799), Peak Signal-to-Noise Ratio (PSNR) 28.79, and Structural Similarity Index (SSIM) 0.71. The best classification accuracy is [Formula: see text], indicating that Convolutional Neural Networks (CNNs) and transfer learning are superior to traditional methods. The results show that the proposed model increases the contrast of a particular color image without altering its structural information.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24647"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09394-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy (DR) is an age-related macular degeneration eye disease problem that causes pathological changes in the retinal neural and vascular system. Recently, fundus imaging is a popular technology and widely used for clinical diagnosis, diabetic retinopathy, etc. It is evident from the literature that image quality changes due to uneven illumination, pigmentation level effect, and camera sensitivity affect clinical performance, particularly in automated image analysis systems. In addition, low-quality retinal images make the subsequent precise segmentation a challenging task for the computer diagnosis of retinal images. Thus, in order to solve this issue, herein, we proposed an adaptive enhancement-based Deep Convolutional Neural Network (DCNN) model for diabetic retinopathy (DR). In our proposed model, we used an adaptive gamma enhancement matrix to optimize the color channels and contrast standardization used in images. The proposed model integrates quantile-based histogram equalization to expand the perceptibility of the fundus image. Our proposed model provides a remarkable improvement in fundus color images and can be used particularly for low-contrast quality images. We performed several experiments, and the efficiency is evaluated using a large public dataset named Messidor's. Our proposed model efficiently classifies a distinct group of retinal images. The average assessment score for the original and enhanced images is 0.1942 (standard deviation: 0.0799), Peak Signal-to-Noise Ratio (PSNR) 28.79, and Structural Similarity Index (SSIM) 0.71. The best classification accuracy is [Formula: see text], indicating that Convolutional Neural Networks (CNNs) and transfer learning are superior to traditional methods. The results show that the proposed model increases the contrast of a particular color image without altering its structural information.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.