{"title":"Model-based analysis of the circadian rhythm generation of bioluminescence reporter activity in duckweed.","authors":"Yu Horikawa, Emiri Watanabe, Shogo Ito, Tokitaka Oyama","doi":"10.5511/plantbiotechnology.24.1226a","DOIUrl":null,"url":null,"abstract":"<p><p>Bioluminescence monitoring techniques are widely used to study the gene expression dynamics in living plants. Monitoring the bioluminescence from a luciferase gene under the control of a circadian promoter is indispensable for examining plant circadian systems. The bioluminescence monitoring technique was successfully applied to physiological studies of circadian rhythms in duckweed plants. It has been reported that a luciferase gene under a constitutive promoter also exhibits a bioluminescent circadian rhythm in duckweed. However, the mechanisms underlying rhythm generation remain unknown. In this study, we performed a model-based analysis to evaluate the machinery that generates the bioluminescence rhythm. We hypothesized the rhythmic factor of three aspects regarding the bioluminescence intensities of luciferase in cells: luminescence efficiency, production rate, and degradation rate. Theoretically, if the latter two are involved in rhythm generation, the difference in luciferase stability affects the amplitude and phase relations of the bioluminescence rhythm. Luciferase stability is irrelevant to these rhythm properties if only the luminescence efficiency is involved. First, we simulated the bioluminescence rhythms of two luciferases with different stabilities associated with each of three rhythmic factors. Luciferase stability was set based on the reported values for Emerald-luciferase and Emerald-luciferase-PEST. We then experimentally examined the bioluminescence rhythms of reporters of these luciferases driven by the <i>CAULIFLOWER MOSAIC VIRUS 35S</i> promoter in the duckweed <i>Lemna japonica</i>. Their circadian properties matched those obtained from the simulation of the luminescence efficiency. This supports the view that cells in duckweed show circadian changes in physiological conditions associated with the luciferase enzyme reaction.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"42 2","pages":"173-177"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.1226a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioluminescence monitoring techniques are widely used to study the gene expression dynamics in living plants. Monitoring the bioluminescence from a luciferase gene under the control of a circadian promoter is indispensable for examining plant circadian systems. The bioluminescence monitoring technique was successfully applied to physiological studies of circadian rhythms in duckweed plants. It has been reported that a luciferase gene under a constitutive promoter also exhibits a bioluminescent circadian rhythm in duckweed. However, the mechanisms underlying rhythm generation remain unknown. In this study, we performed a model-based analysis to evaluate the machinery that generates the bioluminescence rhythm. We hypothesized the rhythmic factor of three aspects regarding the bioluminescence intensities of luciferase in cells: luminescence efficiency, production rate, and degradation rate. Theoretically, if the latter two are involved in rhythm generation, the difference in luciferase stability affects the amplitude and phase relations of the bioluminescence rhythm. Luciferase stability is irrelevant to these rhythm properties if only the luminescence efficiency is involved. First, we simulated the bioluminescence rhythms of two luciferases with different stabilities associated with each of three rhythmic factors. Luciferase stability was set based on the reported values for Emerald-luciferase and Emerald-luciferase-PEST. We then experimentally examined the bioluminescence rhythms of reporters of these luciferases driven by the CAULIFLOWER MOSAIC VIRUS 35S promoter in the duckweed Lemna japonica. Their circadian properties matched those obtained from the simulation of the luminescence efficiency. This supports the view that cells in duckweed show circadian changes in physiological conditions associated with the luciferase enzyme reaction.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.