Shoya Komura, Mitsuko Kishi-Kaboshi, Fumitaka Abe, Yoshihiro Inoue, Kentaro Yoshida
{"title":"Improvement of simultaneous genome editing of homoeologous loci in polyploid wheat using CRISPR/Cas9 applying tRNA processing system.","authors":"Shoya Komura, Mitsuko Kishi-Kaboshi, Fumitaka Abe, Yoshihiro Inoue, Kentaro Yoshida","doi":"10.5511/plantbiotechnology.25.0214b","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat (<i>Triticum aestivum</i> L.) consists of three genomes, and notable mutant phenotypes can be observed when all homoeologs are knocked out due to functional redundancy among the homoeologous gene copies. Therefore, high editing efficiency is required to rapidly obtain loss-of-function mutants in wheat. The endogenous tRNA processing system of CRISPR/Cas9 genome editing enables the expression of multiple single-guide RNA (sgRNAs) under the control of a single promoter, facilitating simultaneous multiple genome editing in an organism. Here, we evaluated the genome editing efficiency of multiple sgRNA expressions with the tRNA processing system. At first, using sgRNA of quantitative trait locus for seed dormancy 1, polycistronic tRNA-sgRNA vectors were introduced into immature embryos, and genome editing efficiency was evaluated in the transformed T<sub>1</sub> plants. In the use of three sgRNA modules, there was no difference in the efficiency of genome editing among the positions of the sgRNAs. We subsequently tested simultaneous genome editing of multiple homoeologous loci. Simultaneous expression of six sgRNAs per gene to target all homoeologous loci increased the editing efficiency of all homoeologous loci up to 100%. Our study indicates that the tRNA processing system is highly effective at simultaneous genome editing of homoeologous loci of wheat.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"42 2","pages":"167-172"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.25.0214b","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wheat (Triticum aestivum L.) consists of three genomes, and notable mutant phenotypes can be observed when all homoeologs are knocked out due to functional redundancy among the homoeologous gene copies. Therefore, high editing efficiency is required to rapidly obtain loss-of-function mutants in wheat. The endogenous tRNA processing system of CRISPR/Cas9 genome editing enables the expression of multiple single-guide RNA (sgRNAs) under the control of a single promoter, facilitating simultaneous multiple genome editing in an organism. Here, we evaluated the genome editing efficiency of multiple sgRNA expressions with the tRNA processing system. At first, using sgRNA of quantitative trait locus for seed dormancy 1, polycistronic tRNA-sgRNA vectors were introduced into immature embryos, and genome editing efficiency was evaluated in the transformed T1 plants. In the use of three sgRNA modules, there was no difference in the efficiency of genome editing among the positions of the sgRNAs. We subsequently tested simultaneous genome editing of multiple homoeologous loci. Simultaneous expression of six sgRNAs per gene to target all homoeologous loci increased the editing efficiency of all homoeologous loci up to 100%. Our study indicates that the tRNA processing system is highly effective at simultaneous genome editing of homoeologous loci of wheat.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.