Moataz A Shaldam, Simone Carradori, Francesco Melfi, Paolo Guglielmi, Francesca Diomede, Maurizio Piattelli, Haytham O Tawfik
{"title":"Potential of MAO-B Inhibitors with Multi-Target Inhibition and Antioxidant Properties for the Treatment of Neurodegenerative Disorders.","authors":"Moataz A Shaldam, Simone Carradori, Francesco Melfi, Paolo Guglielmi, Francesca Diomede, Maurizio Piattelli, Haytham O Tawfik","doi":"10.2174/0113895575392491250630195630","DOIUrl":null,"url":null,"abstract":"<p><p>Millions of people worldwide are affected by neurodegenerative disorders (NDs), which include a broad range of clinical ailments that affect the brain or peripheral nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, etc. Neuronal cell death in NDs is often linked to oxidative stress; thus, antioxidant treatment can combat oxidative cell damage, and this strategy has been studied in neurodegenerative processes. Over the past 10 years, we have witnessed intense research activity on the biological potential of human monoamine oxidase (hMAO) inhibitors that have been associated with the prevention of oxidative stress and inflammation. These inhibitors have emerged as promising therapeutic agents, especially in the treatment of neurodegenerative diseases (NDs), where their core activity may help mitigate disease progression. An overview of the current state of numerous scaffolds, such as chromones, coumarins, chalcones, propargylamines, benzothiazoles, aminoisoquinolines, and the natural compounds, including ferulic acid, resveratrol, and chrysin, which combine antioxidant capability and hMAO inhibition is given in this review, with particular attention given to each scaffold's mechanism of action and structure-activity relationships (SARs), which are thoroughly discussed. Focusing on the dual mechanism of action, combining inhibition and antioxidant properties, as a potential therapy for neurodegenerative diseases, we have reviewed the different chemical classes of multi-targetdirected ligand (MTDL) inhibitors developed within this framework. Other central nervous system (CNS)-related enzymes, such as cholinesterases, carbonic anhydrases, and BACE-1, have also been explored as targets in the MTDL strategy. By understanding their biological activity, medicinal chemists can better comprehend biological activity and recommend more effective and specific ND treatments.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575392491250630195630","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Millions of people worldwide are affected by neurodegenerative disorders (NDs), which include a broad range of clinical ailments that affect the brain or peripheral nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, etc. Neuronal cell death in NDs is often linked to oxidative stress; thus, antioxidant treatment can combat oxidative cell damage, and this strategy has been studied in neurodegenerative processes. Over the past 10 years, we have witnessed intense research activity on the biological potential of human monoamine oxidase (hMAO) inhibitors that have been associated with the prevention of oxidative stress and inflammation. These inhibitors have emerged as promising therapeutic agents, especially in the treatment of neurodegenerative diseases (NDs), where their core activity may help mitigate disease progression. An overview of the current state of numerous scaffolds, such as chromones, coumarins, chalcones, propargylamines, benzothiazoles, aminoisoquinolines, and the natural compounds, including ferulic acid, resveratrol, and chrysin, which combine antioxidant capability and hMAO inhibition is given in this review, with particular attention given to each scaffold's mechanism of action and structure-activity relationships (SARs), which are thoroughly discussed. Focusing on the dual mechanism of action, combining inhibition and antioxidant properties, as a potential therapy for neurodegenerative diseases, we have reviewed the different chemical classes of multi-targetdirected ligand (MTDL) inhibitors developed within this framework. Other central nervous system (CNS)-related enzymes, such as cholinesterases, carbonic anhydrases, and BACE-1, have also been explored as targets in the MTDL strategy. By understanding their biological activity, medicinal chemists can better comprehend biological activity and recommend more effective and specific ND treatments.
期刊介绍:
The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines.
Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies.
Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.