Joyceline Praveena, Yuvraj Rallapalli, Keerthana Suresh Kizhakkanoodan, Divakarareddy Vemanna Paladugulu, Sriprasad Acharya, Bharath Raja Guru
{"title":"Dual drug delivery of Paclitaxel and Curcumin via hyaluronic acid functionalized nanoparticles for improved breast cancer therapy.","authors":"Joyceline Praveena, Yuvraj Rallapalli, Keerthana Suresh Kizhakkanoodan, Divakarareddy Vemanna Paladugulu, Sriprasad Acharya, Bharath Raja Guru","doi":"10.1080/09205063.2025.2525668","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer has high mortality rate among women. Though paclitaxel is one of the important drugs used, but frequent use will lead to drug resistance. Nuclear factor kappa B (NFƘB) a transcription factor will be up regulated with frequent use of paclitaxel, and this increases drug resistance in cancer cells. Usage of curcumin will down regulate the NFƘB and using both the drugs in combination with different mechanisms of action has shown synergistic effects and reduces NFƘB expression in cancer cells. To reduce the systemic toxicity, low intracellular uptake and low bioavailability, nano-based therapeutics were used. To improve the targeting ability of the drug to the cancer cells, Hyaluronic acid (HA) is used as a targeting moiety on the surface of the nanoparticles (NP). The study focuses on formulating a Hyaluronic acid (HA) surface functionalized Poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) encapsulated with Paclitaxel (PTX) or Curcumin (CUR) to target CD44v expressed on breast cancer cells. HA surface functionalized NPs encapsulated with only PTX or in combination with CUR were treated against MCF-7 breast cancer cells. We found that HA surface functionalized NPs with combination of PTX and CUR has substantially increased cytotoxicity compared to non-surface functionalized NPs and free drugs and 2.5-fold increased cellular uptake of NPs compared to free drugs. We also found that NFKB activity reduces significantly with the use of CUR with PTX. From the results, we can conclude that combination of drugs in HA surface functionalized NPs will be useful for breast cancer therapy.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2525668","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer has high mortality rate among women. Though paclitaxel is one of the important drugs used, but frequent use will lead to drug resistance. Nuclear factor kappa B (NFƘB) a transcription factor will be up regulated with frequent use of paclitaxel, and this increases drug resistance in cancer cells. Usage of curcumin will down regulate the NFƘB and using both the drugs in combination with different mechanisms of action has shown synergistic effects and reduces NFƘB expression in cancer cells. To reduce the systemic toxicity, low intracellular uptake and low bioavailability, nano-based therapeutics were used. To improve the targeting ability of the drug to the cancer cells, Hyaluronic acid (HA) is used as a targeting moiety on the surface of the nanoparticles (NP). The study focuses on formulating a Hyaluronic acid (HA) surface functionalized Poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) encapsulated with Paclitaxel (PTX) or Curcumin (CUR) to target CD44v expressed on breast cancer cells. HA surface functionalized NPs encapsulated with only PTX or in combination with CUR were treated against MCF-7 breast cancer cells. We found that HA surface functionalized NPs with combination of PTX and CUR has substantially increased cytotoxicity compared to non-surface functionalized NPs and free drugs and 2.5-fold increased cellular uptake of NPs compared to free drugs. We also found that NFKB activity reduces significantly with the use of CUR with PTX. From the results, we can conclude that combination of drugs in HA surface functionalized NPs will be useful for breast cancer therapy.
乳腺癌在妇女中死亡率很高。虽然紫杉醇是常用的重要药物之一,但频繁使用会导致耐药性。核因子κ B (NFƘB)一种转录因子会随着紫杉醇的频繁使用而上调,这增加了癌细胞的耐药性。姜黄素的使用会下调NFƘB,两种药物在不同作用机制下联合使用,显示出协同作用,降低NFƘB在癌细胞中的表达。为了降低全身毒性,低细胞内摄取和低生物利用度,采用纳米治疗方法。为了提高药物对癌细胞的靶向能力,透明质酸(HA)被用作纳米颗粒(NP)表面的靶向片段。该研究旨在制备一种透明质酸(HA)表面功能化的聚乳酸-羟基乙酸(PLGA)纳米颗粒(NPs),该纳米颗粒包被紫杉醇(PTX)或姜黄素(CUR),以靶向乳腺癌细胞中表达的CD44v。HA表面功能化的NPs仅包被PTX或与CUR联合用于MCF-7乳腺癌细胞。我们发现,与非表面功能化NPs和游离药物相比,与PTX和CUR联合使用的HA表面功能化NPs具有显著增加的细胞毒性,并且与游离药物相比,NPs的细胞摄取增加了2.5倍。我们还发现,使用CUR和PTX时,NFKB活性显著降低。由此我们可以得出结论,在HA表面功能化的NPs中联合使用药物将有助于乳腺癌的治疗。
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.