Deep learning for predicting myopia severity classification method.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
WangMeiYu Xing, XiaoNa Li, JingShu Ni, YuanZhi Zhang, ZhongSheng Li, Yong Liu, YiKun Wang, Yao Huang
{"title":"Deep learning for predicting myopia severity classification method.","authors":"WangMeiYu Xing, XiaoNa Li, JingShu Ni, YuanZhi Zhang, ZhongSheng Li, Yong Liu, YiKun Wang, Yao Huang","doi":"10.1186/s12938-025-01416-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myopia is a major cause of vision impairment. To improve the efficiency of myopia screening, this paper proposes a deep learning model, X-ENet, which combines the advantages of depthwise separable convolution and dynamic convolution to classify different severities of myopia. The proposed model not only enables precise extraction of detailed features from fundus images but also achieves lightweight processing, thereby improving both computational efficiency and classification accuracy.</p><p><strong>Approach: </strong>First, fundus images are enhanced and preprocessed to improve feature extraction effectiveness and enhance the model's generalization capability. Then, the model is trained using fivefold cross-validation, leveraging dynamic convolution and depthwise separable convolution to extract features from each fundus image and classify the severity of myopia. Next, Grad-CAM is employed to visualize the model's decision-making process, highlighting the regions contributing to classification. Finally, a user-friendly GUI interface is developed to intuitively present the classification results, thereby enhancing the system's usability and practical applicability.</p><p><strong>Results: </strong>The experimental results show that the proposed method achieves an accuracy of 0.9104, a precision of 0.8154, a recall of 0.8177, an F1-score of 0.8147, and a specificity of 0.9376 in the classification of myopia severity.</p><p><strong>Significance: </strong>The model significantly outperforms existing conventional deep learning models in terms of accuracy, demonstrating strong effectiveness and reliability.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"85"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01416-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Myopia is a major cause of vision impairment. To improve the efficiency of myopia screening, this paper proposes a deep learning model, X-ENet, which combines the advantages of depthwise separable convolution and dynamic convolution to classify different severities of myopia. The proposed model not only enables precise extraction of detailed features from fundus images but also achieves lightweight processing, thereby improving both computational efficiency and classification accuracy.

Approach: First, fundus images are enhanced and preprocessed to improve feature extraction effectiveness and enhance the model's generalization capability. Then, the model is trained using fivefold cross-validation, leveraging dynamic convolution and depthwise separable convolution to extract features from each fundus image and classify the severity of myopia. Next, Grad-CAM is employed to visualize the model's decision-making process, highlighting the regions contributing to classification. Finally, a user-friendly GUI interface is developed to intuitively present the classification results, thereby enhancing the system's usability and practical applicability.

Results: The experimental results show that the proposed method achieves an accuracy of 0.9104, a precision of 0.8154, a recall of 0.8177, an F1-score of 0.8147, and a specificity of 0.9376 in the classification of myopia severity.

Significance: The model significantly outperforms existing conventional deep learning models in terms of accuracy, demonstrating strong effectiveness and reliability.

深度学习预测近视严重程度分类方法。
背景:近视是视力损害的主要原因。为了提高近视筛查的效率,本文提出了一种深度学习模型X-ENet,该模型结合了深度可分离卷积和动态卷积的优点,对不同程度的近视进行分类。该模型不仅能够精确提取眼底图像的细节特征,而且实现了轻量化处理,从而提高了计算效率和分类精度。方法:首先对眼底图像进行增强和预处理,提高特征提取的有效性,增强模型的泛化能力。然后,使用五重交叉验证对模型进行训练,利用动态卷积和深度可分离卷积从每张眼底图像中提取特征并对近视程度进行分类。接下来,使用Grad-CAM将模型的决策过程可视化,突出显示有助于分类的区域。最后,开发了一个友好的GUI界面,直观地呈现分类结果,从而提高了系统的可用性和实用性。结果:实验结果表明,该方法对近视程度的分类准确率为0.9104,精密度为0.8154,召回率为0.8177,f1评分为0.8147,特异性为0.9376。意义:该模型在准确率上明显优于现有常规深度学习模型,具有较强的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信