{"title":"Development of a deep learning-based MRI diagnostic model for human Brucella spondylitis.","authors":"Binyang Wang, Jinquan Wei, Zhijun Wang, Pengying Niu, Lvlin Yang, Yanmei Hu, Dan Shao, Wei Zhao","doi":"10.1186/s12938-025-01404-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Brucella spondylitis (BS) and tuberculous spondylitis (TS) are prevalent spinal infections with distinct treatment protocols. Rapid and accurate differentiation between these two conditions is crucial for effective clinical management; however, current imaging and pathogen-based diagnostic methods fall short of fully meeting clinical requirements. This study explores the feasibility of employing deep learning (DL) models based on conventional magnetic resonance imaging (MRI) to differentiate BS and TS.</p><p><strong>Methods: </strong>A total of 310 subjects were enrolled in our hospital, comprising 209 with BS, 101 with TS. The participants were randomly divided into a training set (n = 217) and a test set (n = 93). And 74 with other hospital was external validation set. Integrating Convolutional Block Attention Module (CBAM) into the ResNeXt-50 architecture and training the model using sagittal T2-weighted images (T2WI). Classification performance was evaluated using the area under the receiver operating characteristic (AUC) curve, and diagnostic accuracy was compared against general models such as ResNet50, GoogleNet, EfficientNetV2, and VGG16.</p><p><strong>Results: </strong>The CBAM-ResNeXt model revealed superior performance, with accuracy, precision, recall, F1-score, and AUC from 0.942, 0.940, 0.928, 0.934, 0.953, respectively. These metrics outperformed those of the general models.</p><p><strong>Conclusions: </strong>The proposed model offers promising potential for the diagnosis of BS and TS using conventional MRI. It could serve as an invaluable tool in clinical practice, providing a reliable reference for distinguishing between these two diseases.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"87"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01404-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Brucella spondylitis (BS) and tuberculous spondylitis (TS) are prevalent spinal infections with distinct treatment protocols. Rapid and accurate differentiation between these two conditions is crucial for effective clinical management; however, current imaging and pathogen-based diagnostic methods fall short of fully meeting clinical requirements. This study explores the feasibility of employing deep learning (DL) models based on conventional magnetic resonance imaging (MRI) to differentiate BS and TS.
Methods: A total of 310 subjects were enrolled in our hospital, comprising 209 with BS, 101 with TS. The participants were randomly divided into a training set (n = 217) and a test set (n = 93). And 74 with other hospital was external validation set. Integrating Convolutional Block Attention Module (CBAM) into the ResNeXt-50 architecture and training the model using sagittal T2-weighted images (T2WI). Classification performance was evaluated using the area under the receiver operating characteristic (AUC) curve, and diagnostic accuracy was compared against general models such as ResNet50, GoogleNet, EfficientNetV2, and VGG16.
Results: The CBAM-ResNeXt model revealed superior performance, with accuracy, precision, recall, F1-score, and AUC from 0.942, 0.940, 0.928, 0.934, 0.953, respectively. These metrics outperformed those of the general models.
Conclusions: The proposed model offers promising potential for the diagnosis of BS and TS using conventional MRI. It could serve as an invaluable tool in clinical practice, providing a reliable reference for distinguishing between these two diseases.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering