Stephanie H Chen, Jia-Yee S Yap, Veronica Viler, Craig Stehn, Karanjeet S Sandhu, Julie Percival, Geoff S Pegg, Tracey Menzies, Ashley Jones, Karina Guo, Fiona R Giblin, Joel Cohen, Richard J Edwards, Maurizio Rossetto, Jason G Bragg
{"title":"Pathways to Recovery: Genomics and Resistance Assays for Tree Species Devastated by the Myrtle Rust Pathogen.","authors":"Stephanie H Chen, Jia-Yee S Yap, Veronica Viler, Craig Stehn, Karanjeet S Sandhu, Julie Percival, Geoff S Pegg, Tracey Menzies, Ashley Jones, Karina Guo, Fiona R Giblin, Joel Cohen, Richard J Edwards, Maurizio Rossetto, Jason G Bragg","doi":"10.1111/mec.70030","DOIUrl":null,"url":null,"abstract":"<p><p>Myrtle rust is a plant disease caused by the invasive fungal pathogen Austropuccinia psidii (G. Winter) Beenken, which has a global host list of 480 species. It was detected in Australia in 2010 and has caused the rapid decline of native Myrtaceae species, including rainforest trees Rhodamnia rubescens (Benth.) Miq. (scrub turpentine) and Rhodomyrtus psidioides (G.Don) Benth. (native guava). Ex situ collections of these species have been established, with the goal of preserving remaining genetic variation. Analysis of reduced representation sequencing (DArTseq; n = 444 for R. rubescens and n = 301 for R. psidioides) showed genetic diversity is distributed along a latitudinal gradient across the range of each species. A panel of samples of each species (n = 27 for R. rubescens and n = 37 for R. psidioides) was resequenced at genome scale, revealing large historical effective population sizes, and little variation among individuals in inferred levels of deleterious load. In Rhodamnia rubescens, experimental assays (n = 297) identified individuals that are putatively resistant to myrtle rust. This highlights two important points: there are tangible pathways to recovery for species that are highly susceptible to rust via a genetically informed breeding programme, and there is a critical need to act quickly before more standing diversity is lost.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e70030"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.70030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myrtle rust is a plant disease caused by the invasive fungal pathogen Austropuccinia psidii (G. Winter) Beenken, which has a global host list of 480 species. It was detected in Australia in 2010 and has caused the rapid decline of native Myrtaceae species, including rainforest trees Rhodamnia rubescens (Benth.) Miq. (scrub turpentine) and Rhodomyrtus psidioides (G.Don) Benth. (native guava). Ex situ collections of these species have been established, with the goal of preserving remaining genetic variation. Analysis of reduced representation sequencing (DArTseq; n = 444 for R. rubescens and n = 301 for R. psidioides) showed genetic diversity is distributed along a latitudinal gradient across the range of each species. A panel of samples of each species (n = 27 for R. rubescens and n = 37 for R. psidioides) was resequenced at genome scale, revealing large historical effective population sizes, and little variation among individuals in inferred levels of deleterious load. In Rhodamnia rubescens, experimental assays (n = 297) identified individuals that are putatively resistant to myrtle rust. This highlights two important points: there are tangible pathways to recovery for species that are highly susceptible to rust via a genetically informed breeding programme, and there is a critical need to act quickly before more standing diversity is lost.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms