Theoretical Insights into the Activation and Conversion of Electrochemical CO2 Reduction on 3d Transition Metal-Doped Cu(111) Stepped Structures

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Lihong Yin, Jinxian Feng, Weng Fai Ip, Guangfu Luo, Hui Pan
{"title":"Theoretical Insights into the Activation and Conversion of Electrochemical CO2 Reduction on 3d Transition Metal-Doped Cu(111) Stepped Structures","authors":"Lihong Yin,&nbsp;Jinxian Feng,&nbsp;Weng Fai Ip,&nbsp;Guangfu Luo,&nbsp;Hui Pan","doi":"10.1002/celc.202500095","DOIUrl":null,"url":null,"abstract":"<p>The activation of CO<sub>2</sub> is essential for efficient electrochemical conversion, yet its weak physisorption on pristine Cu surfaces severely hinders catalytic performance. To overcome this limitation, we designed Cu stepped structures to create highly reactive sites for enhanced CO<sub>2</sub> adsorption and further doped the edges with 3<i>d</i> transition metals (V, Cr, Mn, Fe, Co, and Ni) to improve CO<sub>2</sub> reduction. Density functional theory calculations reveal that these dopants significantly reduce the O<span></span>C<span></span>O angles and elongate the C<span></span>O bonds, transforming CO<sub>2</sub> from its original linear configuration into a bent geometry at the interface. Notably, dual-V and dual-Fe doping on Cu stepped surfaces demonstrates a strong interaction with CO<sub>2</sub>, leading to a high degree of activation. The computational results demonstrate that these modifications significantly enhance CO<sub>2</sub> activation and favor methane generation. This study provides valuable insights into the design of advanced Cu-based electrocatalysts for efficient and selective CO<sub>2</sub> activation, offering a pathway toward sustainable CO<sub>2</sub> utilization.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202500095","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The activation of CO2 is essential for efficient electrochemical conversion, yet its weak physisorption on pristine Cu surfaces severely hinders catalytic performance. To overcome this limitation, we designed Cu stepped structures to create highly reactive sites for enhanced CO2 adsorption and further doped the edges with 3d transition metals (V, Cr, Mn, Fe, Co, and Ni) to improve CO2 reduction. Density functional theory calculations reveal that these dopants significantly reduce the OCO angles and elongate the CO bonds, transforming CO2 from its original linear configuration into a bent geometry at the interface. Notably, dual-V and dual-Fe doping on Cu stepped surfaces demonstrates a strong interaction with CO2, leading to a high degree of activation. The computational results demonstrate that these modifications significantly enhance CO2 activation and favor methane generation. This study provides valuable insights into the design of advanced Cu-based electrocatalysts for efficient and selective CO2 activation, offering a pathway toward sustainable CO2 utilization.

Abstract Image

三维过渡金属掺杂Cu(111)阶梯结构中电化学CO2还原的活化和转化的理论见解
CO2的活化对于有效的电化学转化至关重要,但其在原始Cu表面的弱物理吸附严重阻碍了催化性能。为了克服这一限制,我们设计了Cu阶梯结构来创建高活性位点以增强CO2吸附,并进一步在边缘掺杂三维过渡金属(V, Cr, Mn, Fe, Co和Ni)以提高CO2还原率。密度泛函理论计算表明,这些掺杂剂显著降低了O - C - O键角,拉长了C - O键,将CO2从原来的线性结构转变为界面处的弯曲几何结构。值得注意的是,Cu阶梯表面上的双v和双fe掺杂表现出与CO2的强相互作用,导致高度活化。计算结果表明,这些改性显著提高了CO2的活性,有利于甲烷的生成。该研究为设计高效选择性CO2活化的先进铜基电催化剂提供了有价值的见解,为可持续利用CO2提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信