Quantum Anomalies in Condensed Matter

IF 2.8
Michael T. Pettes, Shi-Zeng Lin, Elizabeth A. Peterson, Jian-Xin Zhu, Laurel E. Winter, Johanna C. Palmstrom, Jinkyoung Yoo, Nicholas S. Sirica, Prashant Padmanabhan, Priscila F. S. Rosa, Sean M. Thomas, Avadh Saxena
{"title":"Quantum Anomalies in Condensed Matter","authors":"Michael T. Pettes,&nbsp;Shi-Zeng Lin,&nbsp;Elizabeth A. Peterson,&nbsp;Jian-Xin Zhu,&nbsp;Laurel E. Winter,&nbsp;Johanna C. Palmstrom,&nbsp;Jinkyoung Yoo,&nbsp;Nicholas S. Sirica,&nbsp;Prashant Padmanabhan,&nbsp;Priscila F. S. Rosa,&nbsp;Sean M. Thomas,&nbsp;Avadh Saxena","doi":"10.1002/apxr.202400189","DOIUrl":null,"url":null,"abstract":"<p>Quantum materials provide a fertile ground in which to test and realize unusual phenomena such as quantum anomalies predicted by quantum field theory. There are three important symmetries that are broken when classical field theory is moved into the quantum regime, the scale anomaly, the axial (chiral) anomaly, and the parity anomaly. Several potential device applications may be realized by the discovery of quantum anomalies in condensed matter, enabled by the new physics they embody, including ultra-sensitive dark matter detectors, far infrared optical modulators, micro-bolometric detectors, low-dissipation ballistic transporters, terahertz-based qubits, terahertz polarization state controls, passive magnetic field sensors, stable topological superconductors that host Majorana fermions, and qubits topologically protected against decoherence. In this perspective article, the definition of these quantum anomalies is laid out, how little is known in the context of condensed matter, and how quantum anomalies are predicted to manifest as anomalous electronic, thermal, and magnetic behavior in experiments on topological quantum materials, including Weyl and Dirac semimetals. Furthermore, the importance that mechanical strain and defects will play in modifying signatures of quantum anomalies is discussed.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400189","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum materials provide a fertile ground in which to test and realize unusual phenomena such as quantum anomalies predicted by quantum field theory. There are three important symmetries that are broken when classical field theory is moved into the quantum regime, the scale anomaly, the axial (chiral) anomaly, and the parity anomaly. Several potential device applications may be realized by the discovery of quantum anomalies in condensed matter, enabled by the new physics they embody, including ultra-sensitive dark matter detectors, far infrared optical modulators, micro-bolometric detectors, low-dissipation ballistic transporters, terahertz-based qubits, terahertz polarization state controls, passive magnetic field sensors, stable topological superconductors that host Majorana fermions, and qubits topologically protected against decoherence. In this perspective article, the definition of these quantum anomalies is laid out, how little is known in the context of condensed matter, and how quantum anomalies are predicted to manifest as anomalous electronic, thermal, and magnetic behavior in experiments on topological quantum materials, including Weyl and Dirac semimetals. Furthermore, the importance that mechanical strain and defects will play in modifying signatures of quantum anomalies is discussed.

Abstract Image

凝聚态物质中的量子异常
量子材料为测试和实现量子场理论预测的量子异常等不寻常现象提供了肥沃的土壤。当经典场论进入量子态时,有三种重要的对称性被打破,即尺度异常、轴向(手性)异常和宇称异常。一些潜在的器件应用可能通过凝聚态物质中量子异常的发现而实现,包括超灵敏暗物质探测器、远红外光调制器、微辐射探测器、低耗散弹道传输体、基于太赫兹的量子比特、太赫兹偏振状态控制、被动磁场传感器、承载马约拉纳费米子的稳定拓扑超导体、量子比特在拓扑结构上防止退相干。在这篇观点文章中,这些量子异常的定义被列出,在凝聚态物质的背景下所知的是多么少,以及如何预测量子异常在拓扑量子材料(包括Weyl和Dirac半金属)的实验中表现为异常的电子、热和磁性行为。此外,还讨论了机械应变和缺陷对修正量子异常特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信