A Nonequilibrium Thermodynamics-Based Model to Predict Fatigue Failure in Particle-Reinforced Metal Matrix Composites

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Shashwat Srivastava, Abhishek Tevatia
{"title":"A Nonequilibrium Thermodynamics-Based Model to Predict Fatigue Failure in Particle-Reinforced Metal Matrix Composites","authors":"Shashwat Srivastava,&nbsp;Abhishek Tevatia","doi":"10.1111/ffe.14671","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The presented fatigue crack growth (FCG) life prediction model for particle-reinforced metal matrix composites (MMCs) leverages nonequilibrium thermodynamics to characterize the life cycle of crack growth. The model uses an energy balance approach to evaluate FCG rates, focusing on the specific dissipated plastic energy per unit area within the cyclic plastic zone (CPZ), quantified as the area under the cyclic stress–strain curve. The model includes microstructural parameters through strengthening mechanisms, enhancing the model's accuracy. The closed-form analytical solution shows strong alignment with the experimental data across various particle-reinforced MMCs, thereby providing reliable FCG life predictions. The key microstructural parameters, including strain amplitude, hardening exponent, strength coefficient, and particle volume fraction, affect the fatigue life and crack propagation resistance. Polar plots of strain amplitude variations further provide insight into the crack propagation around the CPZ, highlighting the influence of microstructural parameters on crack growth.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 8","pages":"3255-3268"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14671","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The presented fatigue crack growth (FCG) life prediction model for particle-reinforced metal matrix composites (MMCs) leverages nonequilibrium thermodynamics to characterize the life cycle of crack growth. The model uses an energy balance approach to evaluate FCG rates, focusing on the specific dissipated plastic energy per unit area within the cyclic plastic zone (CPZ), quantified as the area under the cyclic stress–strain curve. The model includes microstructural parameters through strengthening mechanisms, enhancing the model's accuracy. The closed-form analytical solution shows strong alignment with the experimental data across various particle-reinforced MMCs, thereby providing reliable FCG life predictions. The key microstructural parameters, including strain amplitude, hardening exponent, strength coefficient, and particle volume fraction, affect the fatigue life and crack propagation resistance. Polar plots of strain amplitude variations further provide insight into the crack propagation around the CPZ, highlighting the influence of microstructural parameters on crack growth.

基于非平衡热力学的颗粒增强金属基复合材料疲劳失效预测模型
提出了颗粒增强金属基复合材料疲劳裂纹扩展(FCG)寿命预测模型,利用非平衡态热力学来表征裂纹扩展的寿命周期。该模型采用能量平衡方法来评估FCG速率,重点关注循环塑性区(CPZ)内单位面积的比耗散塑性能,量化为循环应力-应变曲线下的面积。通过强化机制,模型包含了微观结构参数,提高了模型的准确性。封闭形式的解析解与各种颗粒增强mmc的实验数据有很强的一致性,从而提供可靠的FCG寿命预测。应变幅值、硬化指数、强度系数和颗粒体积分数等关键显微组织参数影响着材料的疲劳寿命和抗裂纹扩展能力。应变振幅变化的极坐标图进一步揭示了CPZ周围的裂纹扩展,突出了微观结构参数对裂纹扩展的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信